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Abstract

Introduction: Despite notable advancements in cancer therapy, conventional treatments continue to face significant
limitations, including nonspecific distribution, systemic toxicity, and frequent therapeutic failure due to drug resistance.
Nanomedicine has emerged as a promising alternative by enabling targeted delivery of chemotherapeutics through engineered
nanoscale carriers that improve drug solubility, stability, and selective accumulation in tumors. Although numerous
preclinical studies report enhanced efficacy and reduced toxicity using nanoparticles in animal models, only a small number
of these systems have succeeded in clinical translation.

Methods: This systematic review assessed the therapeutic efficacy of nanoparticle-based cancer treatments in animal models
and examined the translational challenges preventing their successful implementation in humans. Forty peer-reviewed studies
published between 2004 and 2025 were selected from academic databases including PubMed, Scopus, ScienceDirect, Nature,
SpringerLink, and Frontiers. Studies were included based on the use of nanoparticles in preclinical cancer models with
reported outcomes on efficacy, toxicity, or clinical development status.

Results: Preclinical investigations consistently demonstrated that nanoparticle systems, including liposomes, polymeric
carriers, inorganic particles, and stimuli-responsive platforms, improve tumor accumulation, reduce off-target toxicity, and
induce stronger therapeutic responses than conventional drugs. Active targeting strategies, such as ligand-mediated or tumor
microenvironment-responsive designs, further enhanced selectivity and efficacy. However, less than 1% of the injected
nanoparticle dose typically reaches solid tumors in human patients. This stark discrepancy arises from biological and
technical barriers, including poor predictive power of animal models, rapid immune clearance, tumor heterogeneity,
manufacturing complexities, and regulatory constraints.

Discussion: The findings underscore the limitations of current preclinical tools in forecasting clinical outcomes. While
existing platforms show potent antitumor activity in animals, their clinical benefit is limited unless designs account for
human-specific pharmacokinetics and immunological responses. Innovations such as humanized models, biomarker-guided
patient selection, and artificial intelligence-driven nanoparticle optimization are beginning to address these issues.
Conclusion: To unlock the clinical potential of nanomedicine, future development must integrate advanced preclinical
systems, precision targeting, and interdisciplinary collaboration. This review highlights the critical gaps and offers a roadmap
toward more effective and translatable nanotherapeutic strategies in cancer care.

Keywords: cancer nanomedicine; targeted drug delivery; clinical translation; nanoparticle therapeutics;
tumor microenvironment

Introduction

Cancer remains a leading cause of morbidity and
mortality worldwide, with global incidence and death rates
continuing to rise despite decades of therapeutic
advancement [1]. Conventional treatment modalities such
as chemotherapy and radiation lack selectivity, cause
systemic toxicity, and often lead to the development of drug
resistance [2]. These disadvantages underscore an urgent
need for more effective and targeted therapeutic
approaches.
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Nanomedicine, the application of nanoscale materials
in disease diagnosis and treatment, has gained increasing
attention as a promising approach to overcome some of
these limitations in cancer therapy. Nanoparticles are
typically defined as engineered structures with dimensions
between 1 and 100 nm, a size range that imparts unique
physicochemical properties such as high surface-to-volume
ratio and tunable surface chemistry, which can be exploited
for more precise drug delivery [3]. Engineered
nanoparticles offer numerous advantages as drug carriers,
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including improved drug solubility, extended circulation
time, controlled drug release, and greater accumulation in
tumor tissue via the enhanced permeability and retention
(EPR) effect [4, 5]. In particular, these nanoparticles can
bypass biological barriers and deliver chemotherapeutic
agents directly to tumor cells, which helps reduce off-target
toxicity and improve therapeutic outcomes [6].

Over the past decade, many preclinical studies have
demonstrated that a variety of nanocarriers - including
liposomes, polymeric nanoparticles, and inorganic materials
- can enhance drug delivery, reduce systemic toxicity, and
increase tumor-specific drug accumulation in vivo [7, 8, 9].
Notably, these nanoparticle systems have produced
significant tumor regression and improved survival in
animal models compared to administering the free drugs
alone [7]. Collectively, such findings contribute to a
growing body of evidence that nanotechnology can improve
therapeutic outcomes in oncology.

However, translating these preclinical successes into
clinical treatments has proven extremely challenging. A
comprehensive analysis by Wilhelm et al. (2016) showed
that less than 1% of administered nanoparticles actually
reach solid tumors in human patients, revealing a stark gap
between the promise of preclinical studies and clinical
reality [10, 11]. Moreover, very few nanoparticle-based
drugs have been approved by the FDA, with only a handful
(such as Doxil and Abraxane) reaching the market to date
[12, 13]. This shortfall is due to multiple challenges,
including clearance by the immune system, tumor
heterogeneity, difficulties in scaling up nanoparticle
production, and regulatory complexities [3, 13, 14].

Given these translational barriers, it is important to
examine which nanoparticle design features or preclinical
outcomes actually correlate with later clinical success or
failure. This review aims to systematically analyze peer-
reviewed literature to identify patterns in nanoparticle
design, targeting strategies, and therapeutic performance in
preclinical cancer models, while also tracing the fate of
these nanomedicines in clinical development. Beyond
mapping current trends, this review also critically discusses
key advancements, persistent challenges, and emerging
directions for future research in the field of cancer
nanomedicine. A better understanding of this translational
gap is crucial for optimizing future nanotherapeutic
platforms and increasing their chances of successful clinical
implementation [15, 16].

Methods

A systematic literature review was conducted to
evaluate the therapeutic potential of nanoparticle-based
cancer treatments in preclinical models and to identify
barriers to clinical translation. Articles were retrieved from
six academic databases: PubMed, Scopus, ScienceDirect,
Nature, SpringerLink, and Frontiers, using keyword
combinations such as  “cancer”, ‘“nanoparticles”,
“preclinical”, “animal model”, “clinical trial”’, and
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“translation.” The search was limited to English-language,
peer-reviewed articles published between 2004 and
2025.Studies were included if they used nanoparticles in
preclinical animal cancer models and reported outcomes
related to efficacy, toxicity, targeting strategies, or clinical
relevance. Exclusion criteria comprised in vitro-only
studies, non-cancer applications, and non-original articles
(e.g., editorials, protocols, or incomplete reports). After
screening, 40 articles met the criteria and were included for
full-text analysis.

Results
Nanoparticle Classes in Preclinical Cancer Research

A wide range of nanoparticle platforms have been
explored in preclinical cancer models, each offering distinct
structural and functional advantages:

Liposomes, such as Doxil, are phospholipid-based
vesicles that encapsulate drugs within aqueous or lipid
compartments. They are biocompatible and can reduce
toxicity while enhancing tumor uptake [12, 17, 18].

Polymeric nanoparticles, especially those based on
PLGA and PEG, offer biodegradable, modifiable surfaces
suitable for prolonged circulation and sustained release.
They are often engineered to avoid immune clearance and
can be tailored for multi-drug loading and targeted delivery
[4, 19].

Inorganic nanoparticles (such as gold, silica, or iron
oxide) are rigid and precisely engineerable, enabling dual
functionality in therapy and imaging. Gold nanoparticles
provide photothermal capabilities, while iron oxide systems
serve as magnetic resonance imaging (MRI) contrast agents
[1, 6, 20].

Stimuli-responsive systems release drugs in response
to internal signals (like pH or ROS) or external triggers
(heat, light, magnetism), allowing on-site activation and
reducing off-target effects [8, 21]. Some designs also
activate programmed cell death pathways such as
apoptosis or ferroptosis, enhancing efficacy even in
resistant tumors [22].

Hybrid nanoparticles combine different materials to
maximize drug loading, stability, and targeting. Lipid-
polymer or liposome-metal hybrids enable simultaneous
therapy and imaging, with synergistic results in mouse
models [9, 15].

Dendrimers, though less common, are highly branched
polymers capable of precise targeting and high drug
payloads. When functionalized with ligands like folate or
transferrin, dendrimers have demonstrated marked tumor
regression in vivo [19].

These classes represent the diverse engineering
strategies used to optimize nanoparticle performance in
preclinical cancer therapy.

Preclinical Therapeutic Benefits of Nanoparticles
A wide range of preclinical studies have demonstrated
that nanocarriers significantly outperform conventional
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chemotherapy in terms of efficacy, biodistribution, and
toxicity profiles. Unlike free drugs, which often exhibit
poor pharmacokinetics and high systemic toxicity,
nanoparticles are designed to optimize delivery through
features such as high surface-area-to-volume ratios, tunable
surface chemistry, and capacity to encapsulate both
hydrophilic and hydrophobic drugs [2, 4]. These structural
characteristics  translate into prolonged circulation,
improved plasma stability, and increased tumor
accumulation through the EPR effect, as confirmed in
multiple murine models [5, 8].

Beyond biodistribution, therapeutic outcomes in animal
studies consistently report superior tumor suppression and
survival rates when using nanoparticle-based formulations.
For example, paclitaxel or doxorubicin encapsulated in
polymeric or liposomal nanocarriers induced significantly
higher levels of apoptosis, slowed tumor progression, and
extended survival compared to the free-drug equivalents
[7, 8, 17, 18]. Notably, liposomal doxorubicin (Doxil)
reduced cardiotoxicity without compromising antitumor
efficacy - an effect attributed to the shielding of normal
tissues through PEGylation and controlled drug release
[17, 18, 23].

Several studies also report the ability of nanocarriers
(mostly polymeric) to bypass multidrug resistance
mechanisms, such as P-glycoprotein-mediated efflux, by
enabling intracellular accumulation and sustained cytotoxic
exposure [9, 15]. In some cases, a single injection led to
sustained tumor suppression, indicating a long-acting effect
[7]. Additionally, many platforms, such as polymeric
micelles, liposomes, hybrid systems, and dendrimers,
support combinatorial delivery, enabling co-encapsulation
of drugs or concurrent release of chemotherapy and
immunomodulatory agents [19].

In addition to small molecules, nanoparticles deliver
small interfering RNA (siRNA) and microRNA (miRNA)
to silence oncogenes or modulate immunity with high
selectivity and minimal off-target effects [19, 21]. For
example, polymer-based nanoparticles carrying siRNA
against an autophagy-related gene enhanced the efficacy of
doxorubicin and suppressed tumor growth in a triple-
negative breast cancer mouse model [24]. Some preclinical
systems also integrate imaging and therapeutic components,
enabling real-time monitoring of treatment - an approach
known as theranostics [1, 9]. A representative example is a
perfluorocarbon—polyepinephrine nanoparticle that
simultaneously provided ultrasound and fluorescent tumor
imaging while delivering photothermal and chemodynamic
therapy under near-infrared light, leading to pronounced
tumor regression in vivo [25].

Together, these systems improve tumor selectivity,
circulation times, and resistance bypassing, while allowing
for multifunctional and long-acting treatment. Though these
outcomes are largely limited to animal models, they
highlight the broad therapeutic potential of nanomedicine.
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Targeting Strategies in Preclinical Models

In preclinical cancer nanomedicine, passive targeting
via the EPR effect remains a key delivery mechanism.
Leaky tumor vasculature and poor lymphatic drainage
allow nanoparticles to accumulate more readily in tumor
tissue than in healthy organs [4, 5]. While this has driven
many successes in animal models, EPR-driven delivery
alone often suffers from heterogeneous and suboptimal
distribution. Tumor size, vascular density, and stromal
factors (e.g. high interstitial pressure and dense
extracellular matrix) can hinder uniform nanoparticle
distribution, leading to variable drug exposure across tumor
sites [15, 26]. In some cases, passive targeting alone results
in suboptimal or nonspecific dispersion, prompting the
development of enhanced targeting strategies.

Active targeting improves tumor specificity by
functionalizing nanoparticles with ligands that bind cancer-
associated receptors. These ligands, such as antibodies,
peptides, aptamers, or small molecules like folic acid,
enable receptor-mediated uptake into tumor cells [5, 9]. For
example, Cetuximab (an anti-epidermal growth factor
receptor (EGFR) antibody) conjugation enables
nanoparticles to bind selectively to EGFR-overexpressing
tumor cells, achieving higher tumor accumulation and
uptake while sparing normal cells lacking the target [15].
Similarly, peptide-tagged (e.g. RGD-decorated
nanoparticles) and aptamer-functionalized carriers have
demonstrated improved tumor inhibition in mouse models,
outperforming non-targeted versions. Overall, active
targeting has become central in preclinical studies, often
yielding greater tumor specificity and efficacy than passive
targeting alone [7, 9].

Efforts are also underway to target specific cell types
or subcellular compartments. Nanoparticles can be
engineered with signals that direct them to organelles like
mitochondria or nuclei, enhancing intracellular drug
delivery. Mitochondria-targeting carriers, for example, can
trigger apoptosis by inducing oxidative stress at the site of
energy production- an approach that has shown promising
antitumor effects in animal models [5, 15]. Although
organelle-level targeting remains technically challenging in
vivo, it represents a frontier in precision therapy design.

Another promising strategy involves exploiting the
tumor microenvironment (TME). Tumors create distinct
physiological conditions, such as acidic pH, hypoxia, high
reducing-agent levels, and tumor-specific enzymes that can
trigger controlled drug release. TME-responsive
nanoparticles are designed to remain stable in circulation
but to release their payload in response to tumor-localized
triggers. pH-sensitive or enzyme-sensitive carriers, for
instance, destabilize in acidic or enzyme-rich environments,
ensuring site-specific delivery. Likewise, nanocarriers
sensitive to glutathione or matrix metalloproteinases can
unload drugs preferentially within the tumor’s milieu. Such
delivery not only intensifies the drug action at the cancer
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site but also minimizes collateral toxicity to healthy cells
[8,21].

Preclinical cancer models demonstrate that combining
passive EPR accumulation with active ligand targeting and
TME-responsive release results in better tumor specificity
and therapeutic outcomes [5, 9, 15]. These multilayered
targeting strategies are central to advancing precision
nanotherapy in oncology.

Translational Barriers and Clinical Outcomes of
Nanoparticle Therapies

Despite strong preclinical results, many nanoparticle
systems struggle to show the same efficacy in clinical
settings. One major issue is the discrepancy in drug
delivery between animal models and humans. While the
EPR effect enables nanoparticles to accumulate efficiently
in tumors in mice, this process is much less predictable in
human cancers [5, 13]. A meta-analysis by Wilhelm et al.
(2016) showed that, on average, less than 1% of an injected
nanoparticle dose reaches solid tumors in patients [10, 11].
Tumor variability - differences in vascular permeability,
pressure, and extracellular matrix density - further
complicates delivery, making it difficult to predict human
outcomes from animal data [8, 13, 26]. As a result,
traditional animal models may overestimate nanoparticle
efficacy and fail to reflect the complexity of human disease.

Another major challenge is immune clearance. Once
administered, nanoparticles are often opsonized by plasma
proteins and rapidly cleared by the mononuclear phagocyte
system, particularly by Kupffer cells in the liver and spleen
macrophages [27, 28]. This limits their circulation time and
tumor-targeting efficiency. Although PEGylation can help
reduce immune detection by creating “stealth”
nanoparticles, this strategy does not completely prevent
clearance [4, 23]. Moreover, repeated dosing of PEGylated
nanoparticles can induce the Accelerated Blood Clearance
(ABC) phenomenon, in which anti-PEG antibodies mediate
rapid immune recognition and clearance, thereby
compromising efficacy [29].

Tumor heterogeneity and biological variability across
patients further impede translation [30, 31]. Solid tumors in
different patients can differ dramatically in blood vessel
density, permeability, and receptor expression [26]. This
variability leads to uneven nanoparticle distribution and
therapeutic response in clinical settings [13, 30, 32]. For
instance, well-perfused tumors may absorb nanoparticles
efficiently, while dense or poorly vascularized tumors may
block them entirely [26, 33]. Clinical trials have reported
large differences in drug accumulation even among patients
treated with the same nanodrug [31]. Such unpredictability
means that a nanoparticle delivery system must be robust
across a range of tumor microenvironments - a criterion few
current platforms meet.

In addition to biological challenges, technical and
manufacturing hurdles further restrict clinical translation.
Scaling up nanoparticle production while maintaining
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quality and reproducibility is complex. Minor variations in
synthesis, such as mixing speed or solvent composition, can
affect particle size, drug content, or surface properties,
impacting performance [34, 35]. These issues are especially
pronounced for complex hybrid or multifunctional
nanoparticles, which may require intricate assembly steps
and specialized materials [14]. Giri et al. (2023) noted that
despite therapeutic promise, the clinical translation of many
nanodrugs is hindered by challenges in large-scale
manufacturing, reproducibility, and cost.

Regulatory challenges also play a major role.
Nanomedicines require detailed physicochemical and
toxicological characterization, which prolongs development
timelines and increases costs [36]. Without early clinical
signals of efficacy, developers and investors may hesitate to
support such high-risk platforms, especially those without
clear advantages over conventional treatments [37].

Despite these setbacks, a few nanoparticle-based drugs
have successfully navigated this landscape. The most well-
known examples - Doxil (PEGylated liposomal
doxorubicin) and Abraxane (albumin-bound paclitaxel) -
have achieved regulatory approval and widespread clinical
use. Doxil prolongs circulation and promotes tumor
accumulation while lowering the cardiotoxicity typically
seen with free doxorubicin [17, 18]. Abraxane, by using
albumin nanoparticles instead of toxic solvents like
Cremophor EL, increases tolerability and allows higher
dosing [38]. These benefits are largely due to
pharmacokinetics  enhancements (extended half-life,
improved tumor delivery) and lower off-target toxicity,
features that helped early-generation nanodrugs gain
approval based on reduced adverse effects while
maintaining efficacy [8].

In contrast, many investigational nanotherapies have
failed to demonstrate added clinical value. Platforms
featuring complex targeting ligands or multifunctional
capabilities often fell short in efficacy or suffered from
immune clearance issues in humans, despite excellent
results in preclinical studies [27, 28, 29, 30, 31]. This
pattern reveals a mismatch between scientific innovation
and clinical practicality.

Taken together, these findings emphasize that for
nanomedicines to succeed clinically, they must go beyond
strong preclinical performance. They must also offer
tangible advantages in human pharmacokinetics,
manufacturability, safety, and cost-effectiveness. Without
this alignment, even the most promising platforms risk
joining the long list of failed candidates.

Discussion

Preclinical investigations consistently show that
nanoparticles leverage the EPR effect, and when modified
with targeting ligands, can achieve superior intratumoral
drug accumulation and lower systemic toxicity, resulting in
marked tumor regression in murine models [2, 4, 5, 7, §].
However, a meta-analysis of 232 clinical and advanced
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preclinical datasets revealed that, on average, only 0.7% of
the injected nanoparticle dose reaches solid tumors in
patients, a figure that has remained stagnant for over a
decade [10, 11]. This disconnect highlights several
interlinked barriers that continue to hinder clinical
translation.

Model Limitations

Traditional two-dimensional cell cultures and murine
xenograft models fail to mimic key features of human
tumors, such as stromal density, vascular heterogeneity, and
immune system complexity. As a result, essential
nanoparticle-host interactions, including opsonization,
complement activation, and endothelial transport, often
emerge only during human trials [2, 3, 13, 14].

Biological Variability

Differences in vascular permeability, interstitial
pressure, and extracellular matrix composition between and
within patients produce inconsistent EPR effects.
Additionally, nanoparticles are frequently diverted to
clearance organs by the mononuclear phagocyte system or
filtered by the kidneys, reducing tumor exposure
[10, 11, 26, 27, 28].

Manufacturing and Regulation

The physical and chemical characteristics of
nanoparticles are highly sensitive to fabrication parameters.
Small changes in solvent composition, shear stress, or
temperature can affect particle size, charge, and drug-
release behavior - making large-scale manufacturing, batch
consistency, and regulatory approval more difficult
[3, 35, 36, 37].

These challenges explain why only a few
formulations, most notably Doxil and Abraxane, have been
successfully approved [17, 18, 38]. As a result, current
clinical strategies focus on “smart” carriers that combine
tumor-specific  targeting with controlled, stimulus-
responsive release. Examples include the prostate-specific
membrane antigen (PSMA)-targeted polymeric
nanoparticle BIND-014 and the thermosensitive liposome
ThermoDox [39, 40].

To address the limitations of existing systems, three
complementary approaches can be used:

1) Human-Relevant Experimental Models

Humanized mice, which are engrafted with patient-
derived immune cells or tumor fragments, better replicate
cytokine signaling, macrophage behavior, and nanoparticle
distribution than conventional hosts [1, 3, 13]. Ex vivo
models such as patient-derived organoids, tumor-on-a-chip
platforms, and precision-cut tissue slices preserve tissue
architecture and mechanical properties, allowing detailed
evaluation of nanoparticle penetration and release while
also identifying immunogenic or toxic properties early on
[14,21].
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2) Biomarker-Guided Patient Selection

Screening for target receptor expression (e.g., PSMA,
HER2, folate receptor) or for tumor microenvironmental
features that favor EPR-based delivery can improve response
rates in early clinical trials. This strategy has already
enhanced outcomes in studies using targeted micelles and
liposomes, while also generating valuable pharmacodynamic
data to refine nanoparticle design [5, 8, 15, 26, 30].

3) Artificial Intelligence (Al) and Machine Learning

Predictive models trained on large datasets now link
nanoparticle characteristics, such as size, shape, stiffness,
and ligand density, to key outcomes like circulation time,
tumor uptake, and endosomal escape. Generative
algorithms can even suggest optimized designs before
synthesis begins. At the clinical level, Al-enabled adaptive
trial platforms are being used to adjust dosing based on
real-time pharmacokinetics, imaging biomarkers, and
toxicity signals, helping to detect efficacy earlier [16].

The success of these innovations will depend on
continued  collaboration  across  disciplines.  Early
involvement from academic researchers, manufacturing
specialists, and regulatory agencies is essential to align
nanoparticle design with real-world production and approval
standards [12, 36]. Multidisciplinary advisory groups and
flexible regulatory frameworks that allow protocol
adjustments based on interim or real-world data could help
accelerate progress [3, 7, 13]. Transparent communication
between stakeholders from the design phase onward will be
key to closing knowledge gaps and avoiding costly delays.

By integrating human-relevant modeling, biomarker-
informed enrollment, Al-powered optimization, and
collaborative regulatory strategies, the field of cancer
nanomedicine can begin to overcome its current limitations.
These combined efforts hold the potential to turn strong
preclinical findings into safe, effective, and personalized
cancer therapies.

Conclusions

This review synthesized evidence from seventeen peer-
reviewed studies to examine the therapeutic promise of
nanoparticles in preclinical cancer models and to explore
the persistent obstacles hindering their clinical translation.
Across a broad spectrum of nanoparticle types, animal
studies demonstrated clear advantages: enhanced tumor-
specific accumulation, reduced systemic toxicity, prolonged
circulation, and improved treatment efficacy. Notably,
advanced targeting strategies, such as ligand-mediated
delivery and tumor microenvironment-responsive release,
further refined precision in drug deployment. However,
translation into human use has been constrained by several
recurring issues: animal models often fail to mimic the
complexity of human tumors, immune clearance
mechanisms limit nanoparticle bioavailability, and
production challenges complicate scale-up and regulatory
compliance. Despite these setbacks, a few formulations like
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Doxil and Abraxane have achieved clinical success, largely
by solving specific pharmacological issues of their parent
drugs. Future progress will likely depend on integrating
human-relevant  testing  systems, biomarker-guided
stratification, and Al-driven design to enhance predictive
accuracy and streamline development. With greater
interdisciplinary collaboration, the path forward for cancer
nanomedicine holds real potential to turn preclinical
innovation into meaningful clinical benefit.
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