UNDERGRADUATE RESEARCH IN NATURAL AND CLINICAL SCIENCE AND TECHNOLOGY (URNCST) JOURNAL
Read more URNCST Journal articles and submit your own today at: https:/www.urncst.com

RESEARCH PROTOCOL

Necrostatin-1 as a Neurogenic Agent to Ameliorate the
Neurogenesis and Motor Outcomes in Neonatal Hypoxic-
Ischemic Encephalopathy Through RIP1 Inhibition:

A Research Protocol

| '.) Check for updates

Rosalyn Deng, BHSc Student [1]*, Carrie Ji, HBSc Student [2]

[1] Faculty of Health Sciences, Queen’s University, Kingston, Ontario, Canada K7L 3N6
[2] Faculty of Arts and Science, University of Toronto, Toronto, Ontario, Canada M5S 1Al

URNCST Journal

*Research in Earnest”

*Corresponding Author: rosalyn.deng@queensu.ca

Abstract

Introduction: Hypoxic-ischemic encephalopathy (HIE) is a severe neonatal brain injury that disrupts neurogenesis and
motor function through RIP1-mediated necroptosis. While Necrostatin-1 (Nec-1) demonstrates neuroprotective potential in
adult ischemia models, its effects in neonatal HIE remain poorly understood due to developmental differences in blood-brain
barrier permeability and RIP1 signaling. This research protocol investigates Nec-1’s capacity to ameliorate HIE-induced
neurogenic and motor deficits by inhibiting RIP1-mediated cell death pathways.

Methods: Postnatal day 7 mice will be randomized into three groups: Nec-1-treated HIE, vehicle-treated HIE, and untreated
controls (n = 14/group, equivalent sex distributions). HIE will be induced via right carotid artery ligation followed by
hypoxia (FiO, = 0.08 for 1.5 h). Nec-1 (0.04 mg/kg) will be administered intracerebroventricularly pre- and post-hypoxia.
Tissue will be collected at 1 hour, 6 hours, P10, and P21 for immunohistochemical analysis of RIP1-mediated necroptosis via
the Ser-166 autophosphorylation site, neurogenesis markers (DCX and Nestin), and apoptosis (caspase-3). MRI will assess
brain volume at P21, while motor function will be evaluated via RotaRod and grip strength tests.

Results: We hypothesize that Nec-1 will reduce RIP1 expression and necroptosis in HIE mice, evidenced by decreased Ser-166
activation and p-RIP1 cells. Increased DCX" and Nestin" cells in the hippocampal and cerebellar regions alongside preserved brain
volumes in MRI are anticipated. Nec-1-treated mice are expected to show improved motor coordination and strength compared to
vehicle- and untreated mice. Sex-specific responses are predicted to emerge, with male mice exhibiting attenuated benefits.
Discussion: This research protocol addresses critical gaps in understanding Nec-1’s neurogenic effects in developing brains.
Successful outcomes could position RIP1 inhibition as a complementary strategy to the current standard, hypothermia.
Limitations include translational challenges of murine models and intracerebroventricular injection in neonates, effects of
stress responses throughout handling, and short-term endpoints.

Conclusion: This study evaluates Nec-1’s potential to mitigate HIE-induced neurodevelopmental impairments through RIP1
inhibition, with anticipated outcomes including reduced necroptosis, preserved neurogenesis, and improved motor function.
By characterizing these mechanisms in neonatal mice, this study aims to inform adjunctive approaches to hypothermia and
strengthen the rationale for translating RIP1-targeted interventions into clinical strategies for infant neuroprotection.

Keywords: hypoxic-ischemic encephalopathy; neurogenesis; motor function; necroptosis; receptor-interacting protein 1;
Necrostatin-1; neonatal brain injury

Introduction

Hypoxic-ischemic encephalopathy (HIE) is a severe
neonatal brain injury caused by perinatal asphyxia,
disrupting oxygen delivery to developing cerebral tissue
[1]. Affecting approximately 1.5 per 1000 live births, risk
factors include low gestation periods, late-trimester
bleeding, and maternal infection, with severity depending
on hypoxia duration and cerebral growth [2-4]. Clinically,
HIE is graded from Stage 1 (mild symptoms, high recovery
potential) to Stages 2-3 (severe, greater risk of long-term
consequences) [5]. Acute symptoms like seizures, lethargy,
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and respiratory distress can progress to chronic neurological
disabilities if left untreated [6]. Notably, male infants often
face greater adverse outcomes, including higher mortality
and developmental deficits, due to reduced neuroprotective
sex hormones and X-chromosome immune gene-conferred
advantages in females [7, 8].

Long-term consequences range from cerebral palsy
(CP) to epilepsy, with motor deficits frequently linked to
necrosis [9, 10]. Necrosis is a form of premature cell death
that disproportionately affects the Purkinje cells in the
cerebellum, a brain region essential for learning and
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memory [11]. Untreated HIE can lead to significant
cerebellar and cerebral volume loss, where the degree of
atrophy correlates with symptom severity [12].

A key pathological feature of HIE is disrupted
neurogenesis, when new neurons are generated from neural
progenitor cells (NPCs) for brain repair and plasticity,
particularly in the subgranular zone (SGZ) and
subventricular zone (SVZ) [13]. This impairment is
associated with cerebellar hypoplasia and elevated risk for
neurodevelopmental disabilities, with structural brain
abnormalities associated with severe motor impairments
[14, 15]. Disrupted neurogenesis is largely driven by
necroptosis, a form of regulated necrosis that exacerbates
NPC loss and HIE-related cognitive deficits [16].

Tumour  necrosis  factor-alpha  (TNF-a), an
inflammatory cytokine, initiates a signalling cascade by
activating receptor-interacting protein 1 (RIP1), a kinase
that triggers either apoptosis or necroptosis [17]. Apoptosis,
a form of programmed cell death, is the genetically
determined elimination of cells through cellular shrinking,

chromosome  condensation, nuclear fragmentation,
membrane blebbing, and non-inflammatory clearance [18].
In contrast, necroptosis features cellular swelling,

cytoplasmic granulation, and membrane rupture, releasing
intracellular contents and provoking inflammation [19].
Apoptosis involves RIP1 complexing with Fas-associated
death domain (FADD) and caspase-8, while necroptosis
requires RIP1-RIP3 necrosome formation. Caspase-3
cleavage marks apoptosis, whereas RIP1 Ser-166
autophosphorylation denotes necroptosis and directly
promotes inflammation and tissue damage [20]. Both
pathways can converge to disrupt plasma membranes,
propagate inflammatory signaling, and ultimately cause cell
death, resulting in impaired neurogenesis [21, 22].
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Targeting necroptosis via RIP1 inhibition has shown
promise in stroke and neurodegenerative diseases [23].
Ischemic brain injury models demonstrate significantly
reduced infarct volume and neurodegeneration, while HIE
models reveal neuroprotection against oxidative damage
and neuroinflammation following RIP1 inhibition [24, 25].

The current standard treatment for HIE is mild
hypothermia (HT), which demonstrates reductions in
neuronal injury and improves outcomes [26]. However, its
efficacy is limited in neonates due to infant fragility and
instability [27]. Alternative experimental treatments,
including antioxidants, antiepileptics, and stem cell
transplantation, have shown pre-clinical promise, but face
translational challenges regarding efficacy and safety
concerns [1]. These emphasize the need for novel
therapeutic interventions against neonatal HIE.

Necrostatin-1 (Nec-1) is a small-molecule inhibitor that
stabilizes the inactive conformation of RIP1 by targeting its
allosteric regulatory adaptive pocket, preventing necrosome
formation and autophosphorylation [28]. Although effective
in adult models, its applications in neonatal neurogenesis
and motor outcomes are complicated by developmental
variation in RIP1 and caspase-8 expression. Furthermore,
the immature blood-brain barrier’s (BBB) heightened
susceptibility to toxins entering circulation influences
Nec-1’s bioavailability, hindering its therapeutic potential
and highlighting a critical gap in knowledge [29].

This study aims to investigate Nec-1’s efficacy in
mitigating neurogenesis and motor consequences for in
vivo neonatal HIE mice models via RIP1 inhibition. We
hypothesize that Nec-1 will attenuate RIPI-mediated
necroptosis, thereby promoting neuronal survival and brain
repair.
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Figure 1: TNF-a signalling pathway: TNFRI1 activation directs cellular fate toward apoptosis (via Caspase-8) or necroptosis
(via RIP1/RIP3/MLKL). Nec-1 exerts its therapeutic effect by specifically inhibiting RIP1 to block necroptotic signalling.
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Methods
1. Materials and Reagents
The following materials and reagents were used to
conduct the neonatal HIE experiments, including induction
of injury, drug administration, tissue processing, and
immunohistochemistry. All reagents were sourced from
commercial suppliers:
e (C57BL/6] neonatal mice (Charles
Laboratories, Strain Code 000664)
e Isoflurane (USP grade)
e Sodium pentobarbital
P3761)
e 6-0 silk suture (Ethicon, Cat# EH7796H)
e Necrostatin-1 (Selleck Chemicals, Cat# S8037)
e  Methyl-beta-cyclodextrin (Sigma-Aldrich, Cat#
C0926)
e 30% sucrose solution (Thermo Fisher Scientific,
Cat# BP220-1)
e  Phosphate-buffered  saline
Scientific, Cat# 10010023)
e 4% paraformaldehyde (Thermo Fisher Scientific,
Cat# AA433689M)
e ProLong Gold Antifade Mountant with DAPI
(Invitrogen, Cat# P36931)
e Anti-RIP1 Ser166 (Cell Signaling Technology,
Cat# 65746)
e Anti-DCX (Abcam, Cat# ab18723)
e Anti-Nestin (Thermo Fisher Scientific, Cat#
MA1-110)
e Anti-cleaved Caspase-3
Technology, Cat# 9664)
e  Goat anti-rabbit [gG HRP-conjugated (Santa Cruz
Biotechnology, Cat# sc-2004)
e Alexa Fluor-conjugated secondary antibodies
(Invitrogen, various)

River

(Sigma-Aldrich, Cat#

(Thermo  Fisher

(Cell Signaling

2. Equipment
All experiments were performed using specialized

laboratory equipment designed for surgical procedures,
tissue preparation, imaging, and behavioural testing in
neonatal mice. The following instruments and software
were employed:
e  Tecniplast GM500 ventilated cages (Tecniplast,
Cat# 1284L)
e  Stereotaxic apparatus
e Leica CM1950 Cryostat (Leica Biosystems)
e  Microscope slides (Fisher Scientific, Cat# 12-550-
15)
e Nikon Eclipse Ti-U fluorescence microscope
(Nikon Instruments, Cat# T3-84000)
e Imagel software (NIH)
e ITK-SNAP software (version 3.8.0)
e Dragonfly image segmentation software (Object
Research Systems)
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e  Bruker BioSpec 7T MRI scanner (Bruker Biospin,
Cat# B-Biospec-70/30)

e 3D bSSFP MRI imaging sequence (Bruker)

e RotaRod apparatus (Ugo Basile, Cat# 47600)

e  Grip strength meter (Ugo Basile, Cat# 47200)

3. Animal Model and Experimental Groups

Postnatal day 7 (P7) wild-type Charles River C57/BI6
mice of either sex will be randomly assigned to: (1) Nec-1-
treated HIE, (2) vehicle-treated HIE (methyl-B-cyclodextrin
[Sigma-Aldrich, Cat# C4555]), and (3) untreated baseline
controls (n = 22/group) [30]. Randomization will be done
via a random number generator for group allocation and
researchers will be blinded until the end of analysis. Each
group will be further divided into cohorts designated for
histological analysis or behavioral testing. Four mice will be
housed per Tecniplast GM500 rack with outward airflow
under standard conditions (22 + 1°C, 12-hour light/dark
cycle), with ad libitum access to food and water. Sex-
balanced groups will enable evaluation of differential
responses, given males’ established higher HIE
susceptibility, while controlling for hormonal variability [7].

4. Induction of HIE

The modified Vannucci model, a well-established
method for stimulating neonatal HIE, will be used [31].
Mice will be anesthetized using isoflurane (4% induction,
2-3% maintenance, FiO, = 0.30/N,O = 0.70), followed by a
midline cervical incision and permanent ligation of the right
common carotid artery using a 6-0 silk suture [32]. After 1-
hour recovery, mice will be placed in a hypoxia chamber
(FiO2 = 0.08) for 1.5 hours at 37°C to mimic the hypoxic
environment seen in neonatal brain injury, inducing
systemic hypoxia [30]. Untreated controls will undergo
anesthesia and sham surgery (carotid artery exposure
without ligation) without hypoxia exposure [23]. HIE
induction will occur in staggered cohorts with start times
offset by 10-minutes to standardise tissue collection.
Tracking sheets will log exact hypoxia start and end times
to minimize variability.

5. Nec-1 Administration

Nec-1 (Selleck Chemicals, Cat# S8037) will be
dissolved in dimethyl sulfoxide (DMSO [Sigma-Aldrich,
Cat# D8418]) to prepare a 20 mM stock solution, and
diluted in sterile saline containing 10% (w/v) methyl-B-
cyclodextrin immediately before administration. This
preparation improves Nec-1 solubility and bioavailability
while minimizing DMSO toxicity at higher concentrations.
Methyl-B-cyclodextrin was selected as the vehicle due to its
established use in enhancing Nec-1 solubility and delivery in
rodent studies without exerting neuroprotective effects [24].
Nec-1 (0.04 mg/kg) will be administered via
intracerebroventricular (ICV) injection, given its short half-
life (90 minutes), using a stereotaxic apparatus to accurately
target the right lateral ventricle per the Paxinos and Franklin
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mouse brain atlas [24, 33]. A neonatal stereotaxic mouse
adaptor will be used to increase precision and reduce
variability. ICV injection was chosen as alternative methods
pose increased risk of organ puncturing due to the small size
and limited blood volume of neonatal mice, resulting in
imprecise targeting [34, 35]. The stereotaxic injection will
be induced via a 0.5 mm diameter hole drilled 2.2 mm
lateral of the bregma and 3 mm below the skull surface [36].
To verify the spatial distribution of the stereotactic
injections and accuracy of ICV injections, a subset of 3
mice/group will receive co-injection of 0.05% Evans Blue
dye (Sigma-Aldrich, Cat# E2129). Brains will be harvested
30 minutes post-injection, sectioned, and inspected under a
dissecting microscope to assess the diffusion patterns of
injections. The first dose for each staggered cohort will be
administered 30 minutes before hypoxia, and a second dose
will be delivered 90 minutes post-hypoxia to sustain RIP1
inhibition. Vehicle controls will receive equivalent volumes
of methyl-p-cyclodextrin.

6. Tissue Collection and Processing

Mice will be sacrificed at four post-HIE induction time
points to capture distinct phases of injury and recovery: 1
hour (acute necroptosis; n = 3/group), 6 hours (early
neuroinflammation; n = 3/group), postnatal day 10 (P10;
subacute neurodegeneration/neurogenesis; n = 2/group),
and postnatal day 21 (P21; later neurogenesis effects
following MRI; n = 6/group) [37]. At each time, mice will
be anesthetized with 1.5% sodium pentobarbital (0.06
mL/10 g; Sigma-Aldrich, Cat# P010) in the lower left
abdomen and transcardially perfused with phosphate-
buffered saline (pH 7.4), followed by 4% paraformaldehyde
for tissue fixation [38-40]. Brains will be extracted, post-
fixed for 24 hours, cryoprotected in 30% sucrose (Thermo
Fisher Scientific, Cat# BP220-1) at 4°C until they sink
before freezing, then embedded in Optimal Cutting
Temperature compound [41]. Coronal sections (30 um) will
be cut on a cryostat (Leica CM1950) and stored at -20°C
until staining [42]. The cerebellum and hippocampus will
be isolated for volumetry and histology analyses, given
their vulnerability to HIE and relevance to the primary
outcomes of motor functions and neurogenesis,
respectively. [43, 44]

7. Immunohistochemistry (IHC) and Staining
IHC will be performed to evaluate RIP1 expression,
neurogenesis markers, and cell death markers [45]. Free-
floating sections will be blocked in 5% normal goat serum
(Thermo Fisher Scientific, Cat# 50062Z) for 1 hour and
incubated overnight at 4°C with the following primary
antibodies [37]:
e Ser-166 (1:500, Cell Signaling Technology, Cat#
65746) to detect necroptosis activation via
phosphorylated RIP1.
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e Anti-RIPK1 antibody (1:500, Cell Signaling
Technology, Cat# 3493) to quantify total RIP1
protein expression.

e Doublecortin (DCX) (1:1000, Abcam, Cat#
ab18723) and Nestin (1:500, Thermo Fisher
Scientific, Cat# MA1-110) to assess neurogenesis
in the SGZ and SVZ.

e C(Cleaved caspase-3 (1:500, Cell Signaling
Technology, Cat# 9664) to evaluate potential
effects of apoptosis.

After washing, sections will be incubated with goat
anti-rabbit IgG-HRP (Santa Cruz Biotechnology, Cat# sc-
2004), a conjugated secondary antibody, for 1 hour at room
temperature for fluorescent dying. Sections will be
counterstained with hematoxylin to visualize cell nuclei
[23].

Images will be acquired on a Nikon Eclipse T300
fluorescence microscope with optimized excitation and
emission filters to quantify staining [37]. For each marker,
five images per hippocampus and cerebellum will be taken
(20x magnification). Regions of interest (ROIs) will be
selected based on anatomical landmarks defined in the
Paxinos and Franklin mouse brain atlas for sample
consistency [33]. ImageJ (NIH, Bethesda, Maryland, USA)
will be used to count the number of positively stained cells
and quantify the intensity of RIP1 expression, detected via
anti-RIP1, and phosphorylated RIP1, detected using Ser-166,
by mean fluorescence intensity within ROIs [23].
Background signal will be excluded by setting a threshold
based on average background fluorescence in adjacent
unstained areas. Data will be normalized as ROI area and
expressed as cells/mm?. All values will be compared to age-
matched untreated controls to assess relative changes in
expression.

8. Magnetic Resonance Imaging (MRI)

To assess brain/lesion volume and structural changes,
subsets (n = 6/group) will undergo MRI at P21 [23]. Mice
will be anesthetized with 1.5% isoflurane via an oxygen
mixture through a nose cone and imaged using a 7T MRI
scanner (Bruker BioSpec). T2-weighted images will be
acquired to evaluate brain volume, focusing on the
cerebellum and hippocampus [45]. Anatomical images will
be acquired using a 3D balanced Steady-State free
precession sequence, and volumetric analysis will be
performed using ITK-SNAP software [46]. MRI analysis of
ROIs will occur through manual tracing using Dragonfly
segmentation tools [23]. Volume measurements will be
taken for the hemispheres, hippocampus, and cerebellum
based on the MRI atlas of the brain [23].

9. Motor Function Analysis

To evaluate Nec-1’s impact on motor function, a
dedicated cohort of mice (n = 8/group) will undergo
behavioural testing starting week 6 [30]. Mice will be
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acclimated to the testing environment for 10 minutes/day
over 3 consecutive days to minimize stress. The following
tests will be conducted for 3 days and 3 trials/day, with the
average score used for analysis:

RotaRod [47]: Mice will be placed on an accelerating
rotarod apparatus (Ugo Basile), increasing from 4 to 40 rpm
over 5 minutes. Latency to fall will be recorded to evaluate
short-term and long-term motor coordination via 10 trials,
with 200 s between each. A single test will last from the
time the mouse is placed on the rod until it falls or 5
minutes have elapsed. If a mouse can make a complete
revolution, the latency to the first complete revolution is
recorded. Latency values below 100 s will indicate
significant motor impairment, while values above 200 s will
suggest preserved or enhanced motor coordination.

Grip Strength [30]: Forelimb and hindlimb grip strength
will be measured using a grip strength meter (Ugo Basile).
Mice will be placed on a 45 cm metal wire over a foam pad for
60 s with tension induced by gravity. Peak pull force (tension)
achieved by the limbs before losing grip will be recorded to
assess neuromuscular function. Values below 80 g will
indicate significant neuromuscular weakness, while values
above 120 g will suggest preserved or enhanced strength.

Following completion of behavioural testing, mice
will be humanely euthanized with 1.5% sodium
pentobarbital (0.06 mL/10 g).

10. Statistical Analysis

Quantitative IHC data will be analyzed using
GraphPad Prism to evaluate RIP1 expression, neurogenesis
markers (DCX and Nestin), and cell death markers (cleaved
caspase-3) [23]. One-way ANOVA with Tukey’s post hoc
correction will be conducted for pairwise comparisons
between groups. For behavioural data, repeated-measures
ANOVA will be used for multiple testing sessions over
time. To account for hormonal and genetic factors causing
specific responses, data will be sex-stratified and analyzed
separately within each group. All data will be presented as
the mean + standard error of the mean (SEM), and p<0.05
will be considered statistically significant [23].

Results
Histological and Molecular Markers of Necroptosis and
Apoptosis

IHC analysis of Ser-166 staining is expected to reveal
significantly reduced RIP1 expression in Nec-1-treated
mice compared to other groups, indicating the inhibition of
RIP1-mediated necroptosis. Comparing the right and left
hemispheres for RIP1 immunofluorescence intensity, the
immunofluorescence ratio of RIP1 is anticipated to be
significantly reduced in the hippocampal dentate gyrus of
the right hemisphere, based on prior models showing
regional specificity in necroptosis reduction. [48]

Caspase-3 immunofluorescence is expected to show a
lower number of caspase-3-positive apoptotic cells in Nec-
1-treated mice, particularly in the hippocampus and
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cerebellum, suggesting indirect inhibition of apoptosis [49].
Male mice are predicted to exhibit less reduction than
females, coinciding with reported sex differences in
caspase-3 pathway activation [50].

Neurogenesis Markers and Brain Volume Preservation
(MRI)

Evaluation of neurogenesis markers is expected to
reveal significant increases in DCX-positive and Nestin-
positive cells within the SGZ and SVZ of Nec-1-treated
mice. Effects sustained through P10 and P21 would indicate
the long-term preservation of NPC populations. MRI
analysis at P21 is anticipated to demonstrate protection of
cerebellar and hippocampal brain tissue in Nec-1-treated
mice [23]. Volumetric measurements using ITK-SNAP
software will solidify the significant decrease in
hippocampal and right hemisphere tissue loss in Nec-1-
treated mice. Sex-specific analyses are expected to
demonstrate male mice exhibiting greater tissue loss [51].

Motor Function Assessments (RotaRod and Grip Strength)

Nec-1-treated mice are anticipated to outperform
vehicle- and untreated mice in behavioural assessments.
RotaRod testing is predicted to show a longer mean latency
to fall, indicating preserved cerebellar and hippocampal
volumes and enhanced neurogenesis [47]. Vehicle- and
untreated mice are likely to exhibit weakened learning and
worse performance. The grip strength test is expected to
reveal significantly higher peak tension in the limbs of Nec-
I-treated mice, indicating improved neuromuscular
function [52]. As with cellular and structural outcomes,
male mice are expected to experience more severe motor
function deficits than females [53].

Discussion

This research protocol provides a comprehensive
investigation of Nec-1’s potential as a neuroprotective
agent in mitigating the neurogenic and motor consequences
of neonatal HIE. By targeting necroptosis through RIP1
autophosphorylation inhibition, we aim to address neuronal
loss, enhance neurogenesis, and improve motor function,
targeting limitations of current HIE treatments. Findings
would contribute to growing evidence that necroptosis
plays a prominent role in neonatal brain injury and that its
inhibition may offer a viable therapeutic strategy.

Interpretations
Ischemia-induced RIP1 phosphorylation via Ser-166

specifically marks necroptotic cells, and the presence of p-
RIP1 cells would support the role of RIP1 as a biomarker
for necroptosis in imminent cell death [54]. Beneficial
effects observed in preserved brain volumes on MRI at P21
in ROIs would indicate Nec-1’s role in reducing
neuroinflammation and oxidative stress, improving
structural outcomes. In motor function assessments,
significant improvements in Nec-1-treated mice in motor
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coordination and neuromuscular function, compared to
deficits in skill acquisition and learning in other groups—
likely due to motor-related brain injury—would support
RIPI inhibition for functional recovery. These anticipated
results would align with studies linking motor deficits in
HIE to cerebellar and hippocampal damage [10].

This study aims to build on prior evidence that RIP1
inhibition offers neuroprotection. For instance, Qu et al.
found reduced brain volume loss one week after HIE with
RIP1 inhibition [55]. Confortim et al. reported minor
motor aberrations in HIE mice models, such as inhibited
control and coordination [10]. However, Marlicz et al.
found that HIE mice were able to catch up in motor
learning performance with control, suggesting potential for
neural repair [47]. Notably, Chevin et al. did not find sex-
specific differences in any assessments, contrasting sex-
specific improvements expected in this study that align with
previous findings regarding male infants’ greater
vulnerability to severe HIE outcomes [23, 7].

Clinical Relevance

RIP1 inhibitors are currently being investigated in
human clinical trials for other neurodegenerative diseases
[56, 24]. Preclinical studies show that combining Nec-1
with HT has promising results in enhancing motor recovery
in HIE patients, suggesting that Nec-1 could enhance the
efficacy of existing treatments [23]. Our findings could
potentially support Nec-1’s role in improving coordination
and strength and inform targeted therapies for HIE and
other disorders involving RIP1-mediated necroptosis.
Anticipated improvements observed with Nec-1 appear
comparable with the protection provided by HT, supporting
Nec-1’s potential as a standalone or adjunct therapy.

Limitations

This study’s transferability is limited by the use of
murine models, whose brain development and responses
differ from humans. Findings may not fully replicate the
complexity of human HIE, given discrepancies in BBB
permeability and neuroimmune responses that may affect
Nec-1 pharmacokinetics, as well as the lack of feasibility of
ICV in human neonates [57]. Furthermore, small sample
sizes (n = 22/group, n = 6 for MRI) limit statistical power
in detecting subtle effects. Potential stress to mice during
handling may also influence behavioural outcomes. Despite
planned efforts to acclimatize mice to testing environments,
stress responses are known to cause anxiety, fear, and
cognitive  impairments, leading to confoundation.
Additionally, the short-term focus (up to P21 for
neurogenesis and week 6 for motor outcomes) restricts
insight into Nec-1’s long-term impact and off-target effects
on neurogenesis and motor function, including adult-onset
cognitive deficits or late-emerging neurodevelopmental
disorders. Anticipated challenges include variability in
injury severity, individual recovery trajectories, and the
various unanalyzed brain regions associated with HIE.
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Conclusion

Despite current treatments, many HIE infants continue
to experience severe neurological disabilities, underscoring
the need for novel therapeutic strategies. This study aims to
position Nec-1 as a promising neuroprotective agent in HIE
by inhibiting RIP1-mediated necroptosis, thereby
preserving neurogenesis and improving motor function.
Findings are expected to advance understanding of
necroptosis in neonatal brain injury, highlight challenges
such as the immature BBB’s variable permeability and sex-
specific neuroprotection disparities, and support the
rationale for translating RIP1-targeted interventions to the
clinical setting. Moreover, potential implications may
extend beyond HIE to other neurodegenerative conditions
involving RIP1-dependent cell death.
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