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Abstract 

Traumatic brain injury (TBI) is a leading cause of death and disability worldwide, affecting millions annually [1]. Acute 

neuroinflammation following traumatic brain injury (TBI) is an essential process for tissue repair and recovery. However, 

excessive, or prolonged inflammation can exacerbate damage, contributing to secondary brain injury. This review aims to 

consolidate the complex balance between beneficial and harmful inflammatory responses in TBI, exploring how this balance 

impacts patient outcomes. This review synthesizes findings from recent studies examining neuroinflammatory biomarkers 

during the first two weeks post-injury. A systematic search of PubMed, Nature, and related databases identified studies 
reporting cytokines, chemokines, cell activation markers, acute phase proteins, and oxidative stress indicators in the brain 

following closed-head TBI. After applying strict inclusion and exclusion criteria, ten studies were selected. These formed the 

basis for evaluating temporal patterns of inflammation and identifying biomarkers linked to secondary injury and recovery to 

understand the boundary between beneficial and harmful responses. Proinflammatory cytokines including interleukin-6 (IL-

6), tumor necrosis factor-alpha (TNF-α), interleukin-8 (IL-8), and monocyte chemoattractant protein-1 (MCP-1), 

consistently rose within hours of injury and remained elevated for several days, with IL-6 and IL-8 often exceeding 1000 

pg/mL – levels more than 100-fold above baseline, indicating severe immune activation and potential contribution to 

secondary injury [2]. The anti-inflammatory mediators interleukin-10 (IL-10) and interleukin-1 receptor antagonist (IL-

1ra) also increased, but to a lesser degree. Markers of immune activation, such as cluster of differentiation 68 (CD68) and 

soluble intercellular adhesion molecule-1 (sICAM-1)) were elevated in brain tissue and cerebrospinal fluid (CSF). 

Biomarkers of axonal and neuronal injury, including neurofilament light chain (NFL) and ubiquitin carboxy-terminal 

hydrolase L1(UCH-L1),were significantly elevated within 24–72 hours. Neuroinflammation in TBI involves overlapping 
immune responses that vary with time, location, and severity. Cytokine activity may aid repair, but prolonged IL-6 and MCP-

1 elevation can worsen damage. The complexity of immune activation and structural injury suggests that no single biomarker 

is sufficient. Multi-marker models may offer better tools to guide treatment. This review seeks to inform future approaches 

and support the development of targeted strategies for regulating inflammation in TBI. 
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Introduction 

TBI is a major global health concern, contributing to 

substantial morbidity and mortality [1]. It affects an 

estimated 69 million people worldwide each year [3]. 

Among individuals under 45, TBI is a leading cause of death, 
and many survivors experience long-term disability as a 

result of its effects [4]. 

TBI results from external forces that cause structural or 

functional damage to the brain. It increases the risk of long-

term neurological and psychiatric conditions, including 

Alzheimer’s disease, Parkinson’s disease, seizure disorders, 

depression, cognitive impairment, sleep disturbances, 

disorders of consciousness, and speech deficits [5]. TBI is 

typically classified into closed-head injuries, penetrating 

injuries, and blast-related injuries, which are more common 

in military settings. The severity of TBI is assessed using the 

Glasgow Coma Scale, which evaluates motor, eye, and 
verbal responses [6]. Each year in the United States, 

approximately 50,000 TBI cases result in death, 230,000 lead 

to hospitalization with survival, and 80,000 to 90,000 

patients develop long-term disabilities [7]. 

Current TBI treatments focus on symptom management, 

in part because the secondary injury mechanisms main 

largely idiopathic, rather than directly addressing the 
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underlying pathology. Common interventions include the 

use of steroids to reduce inflammation, though these can 

suppress immune function and lead to systemic side effects 

[8]. Pain relievers are frequently prescribed to manage 

headaches and neurotic pain, while rehabilitation therapies, 
including physical, cognitive, and speech therapy, aim to 

improve functional recovery. However, despite these efforts, 

no treatments currently exist to prevent further neurological 

damage caused by TBI. 

TBI progresses through two distinct phases that each 

contribute to neurological damage [9]. The primary injury 

occurs at the moment of impact and involves direct damage 

to brain tissue. This can include contusions and 

hemorrhaging from ruptured blood vessels, axonal shearing 

that disrupts neural pathways and white matter, and skull 

fractures that may cause additional complications including 

brain swelling or increased risk of infection. 
Following the initial trauma, a cascade of biochemical 

and cellular responses leads to the secondary injury, which 

can further worsen brain damage [9]. Oxidative stress from 

the buildup of free radicals impairs cell function and can 

result in cell death. Excitotoxicity, caused by excessive 

release of neurotransmitters including glutamate, 

overstimulates neurons and leads to their degeneration. 

Neuroinflammation, driven by activated microglia and the 

release of proinflammatory cytokines, contributes to ongoing 

neurodegeneration and may negatively impact recovery. 

Although neuroinflammation can support repair, its 
prolonged or excessive activation is often harmful. The 

complexity of these secondary processes demonstrates the 

importance of strategies aimed at protecting neural tissue, 

limiting inflammation, and reducing the risk of long-term 

impairment. 

While the outcomes and clinical effects of TBI have 

been extensively studied, increasing attention over the past 

two decades has focused on the role of inflammatory markers 

and immune mediators in guiding treatment development. 

These findings hold promise for creating more effective 

therapies that target the underlying mechanisms of TBI 

rather than just managing its symptoms. 
Although the pathophysiological mechanisms of TBI 

are well documented, recent research emphasizes the 

importance of neuroinflammatory pathways in shaping both 

acute and long-term outcomes. However, the temporal 

dynamics and functional implications of specific 

inflammatory mediators remain incompletely understood. 

This review synthesizes current findings on inflammatory 

biomarkers during the acute phase of TBI and evaluates their 

association with secondary injury processes and recovery 

trajectories. In particular, it is aimed to examine how 

variations in cytokine and chemokine expression, immune 
cell activation, and related molecular signals distinguish 

beneficial from detrimental inflammatory responses in the 

acute stages following injury. 

 

Methods 

This literature review examines biomarkers associated 

with neuroinflammation during the acute phase of TBI, 

focusing on their temporal patterns and roles in recovery and 

secondary damage. Specifically, studies tracking 

fluctuations in cytokines, chemokines, and other molecular 

indicators over the first two weeks post-injury were analyzed 

to identify key markers influencing neuroinflammatory 
responses. 

A broad literature search was conducted across major 

scientific databases, including PubMed, Nature, and other 

relevant sources, selecting clinical studies that investigated 

neuroinflammation and inflammatory biomarkers present in 

or around the brain after post-TBI. Key terms were searched, 

yielding 43 papers, which were further screened for 

relevance. Inclusion criteria included the presence of 

biomarker data in the report, studies on closed-head injuries 

without concurrent injuries, and a time frame of one week or 

less post-injury. Key search terms including ((acute) AND 
(traumatic brain injury)) AND (biomarker) were used, along 

with Medical Subject Headings terms including “Brain 

Injuries, Traumatic/physiopathology,” “Brain Injuries, 

Traumatic/complications,” and “Neuroprotection.” Each 

paper was independently screened by the reviewers. Studies 

that did not contain data on cytokines, chemokines, cell 

activation markers, acute phase proteins, or oxidative stress 

markers were excluded. Additionally, studies lacking clear 

temporal biomarker measurements within the first two weeks 

post-injury were excluded. Following the review, the final 

number of included studies was narrowed down to ten. 

 

Results 

Table 1 summarizes clinical findings from ten studies 

assessing reported changes in biomarkers within the first two 

weeks following TBI. Symbols indicate elevations (↑), 

decreases (↓), no changes (/), or unreported findings (—). 

Statistical significance is noted where available. 
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Table 1. Summary of Findings from Clinical Studies on Acute Inflammatory and Immune Markers Following Traumatic Brain 

Injury (TBI) 
Markers/studies Csuka 

et al. [1] 

Kumar 

et al. [2] 

Nessel et 

al. [5] 

Jenkins 

et al. 

[10] 

Semple 

et al. 

[11] 

Cannon et 

al. [12] 

Rowland 

et al. [13] 

Abboud et 

al. [14] 

Tsitsipanis 

et al. [15] 

Nitta et 

al. [16] 

IL-2 — — ↑ (p = 

0.0191) 

— — — — — — — 

IL-4 — — — — — — — ↑ (p < 0.05) — — 

IL-5 — — — — — — — ↑ (p < 0.05) — — 

IL-6 ↑ ↑ (p < 

0.001) 

↑ (p = 

0.0015) 

— — ↑ (p = 

0.0551) 

↑ (p < 

0.05) 

↑ (p < 0.05) ↑ (p = 

0.001) 

↑ (p < 

0.001) 

IL-1β — — — — — ↓ — / — — 

IL-8 — — — — — ↑ (p = 

0.0549) 

↑ (p < 

0.05) 

↑ (p < 0.05) ↑ (p = 

0.004) 

— 

IL-10 / — — — — — ↑ — — — 

IL-ra — — — — — — ↑ — — ↑ (p ≤ 

0.001) 

IL-13 — — ↑ (p = 

0.00094) 

— — — — ↑ (p < 0.05) — — 

TNF-α ↑ ↑ (p < 

0.01) 

— — — — / ↑ (p < 0.05) — — 

MCP-1 — — — — — ↑ (p < 

0.05) 

— — — — 

sICAM-1 — ↑ (p < 

0.01) 

— — — — — — — — 

sVCAM-1 — ↑ (p < 

0.01) 

— — — — — — — — 

sFAS — ↑ (p < 

0.01) 

— — — — — — — — 

CD68 — — — ↑ (p = 

0.0002) 

— — — — — — 

CCL2 — — — — ↑ (p < 

0.001) 

— ↑ ↑ (p < 0.05) — — 

IFN-γ — — — — — ↑ (p < 

0.05) 

/ — — 
 

CSF3 — — — — — — ↑ — — — 

/ = no change; ↑ = elevated; ↓ = decreased;  — = unobserved 

 
Pro-Inflammatory Cytokines 

In the acute phase of TBI, CSF and serum levels of IL-

6, IL-8, TNF-α, interferon-gamma (IFN-γ), MCP-1, 

interleukin-2 (IL-2), interleukin-5 (IL-5), and interleukin-11 

(IL-11) are elevated compared to uninjured controls [1-2, 5, 

10-14]. IL-6 rises within hours post-injury and remains 

elevated through days 3–5, with concentrations in CSF up to 

7.2 times higher than in serum [2]. Peak levels are observed 

within 30 hours post-injury, with some cases exceeding 

1,000 pg/mL [5, 14]. Elevated IL-6 is reported across mild 

and severe TBI cases [2]. 
IL-8 levels show an upward trend within the first 24–72 

hours in plasma and are significantly elevated in CSF on Day 

0 [11, 12, 14]. However, in one study of complicated TBI 

cases, IL-8 was significantly reduced relative to controls 

[15]. TNF-α is significantly elevated in CSF within the first 

five days post-injury [1, 2]. IFN-γ and MCP-1 are 

significantly increased in plasma and CSF respectively 

during the first 24–72 hours after injury, with MCP-1 

peaking on Day 0 and remaining elevated through Day 9 [11, 

12]. IL-2 is significantly increased from 0 to 24 hours post-

injury, while IL-5 and IL-11 are elevated at acute time points 

in serum [5, 14]. Interleukin-1 beta (IL-1β) is inconsistently 
reported: some studies detected its presence but found no 

significant elevation, while other studies reported no change 

or did not measure it directly [12, 13]. 

 

Anti-Inflammatory Cytokines 

IL-10 is significantly elevated in both CSF and plasma 

across studies [1, 2, 5, 15]. IL-10 peaks within the first three 

days post-injury and may persist longer than TNF-α or IL-

6, with some evidence of a smaller secondary peak in the 

second week [1]. In CSF, IL-10 concentrations below 1.06 

pg/mL were observed in healthy controls [1]. IL-1 receptor 

antagonist (IL-1ra) is significantly elevated by 6 hours 
post-injury [16]. Interleukin-13 (IL-13) is significantly 

elevated at 24 hours post-injury [14]. Interleukin-4 (IL-4) 

showed elevation in one study [14], while other studies did 

not report significant findings. 

 

Cell Activation Markers 

Increased microglial and macrophage activation is 

observed via elevated CD68 expression in brain tissue, with 

no corresponding rise in ionized calcium-binding adaptor 

molecule-1 (Iba-1) [10, 15]. The CD68 to Iba-1 ratio is 

significantly higher in TBI brain tissue and correlates with 

regions of fibrinogen deposition [10]. Additionally, soluble 
cell activation markers including sICAM-1, soluble vascular 
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cell adhesion molecule-1 (sVCAM-1), and soluble Fas 

protein (sFAS) are significantly elevated in CSF during the 

acute post-injury phase [2]. 

 

Additional Immune Mediators 
NFL, a marker of axonal injury, is significantly elevated 

in plasma at 24 and 72 hours post-injury compared to 

controls, with levels averaging 269 pg/mL and 276 pg/mL 

respectively [5]. This increase is accompanied by reductions 

in lipid species including lysophosphatidylcholine, 

phosphatidylcholine, and hexosylceramide, and low omega-

3 index (~4%) across all TBI patients. 

Glial fibrillary acidic protein (GFAP) and UCH-L1 are 

also significantly elevated in blood within the first 12 hours 

post-injury and remain elevated through Day 7 [15]. 

Fibrinogen is deposited around cerebral blood vessels in 

TBI tissue more frequently than in controls and co-localizes 
with areas of reduced neuronal density, as shown by 

neuronal nuclei protein (NeuN) staining [10]. Beta-amyloid 

precursor protein (bAPP) is elevated in white matter regions 

including the corpus callosum and internal capsule, and 

immunoglobulin G (IgG) is also increased in TBI brain 

samples [10]. 

Finally, inflammatory network connectivity is increased 

post-injury, with enhanced inter-cytokine clustering and 

centrality of IL-6, IL-8, and IL-1α observed within 6 hours 

[13, 14]. 

 

Discussion 

The inflammatory response following traumatic brain 

injury (TBI) involves a complex interaction of pro- and anti-

inflammatory mediators, which may play both protective and 

damaging roles. Acute neuroinflammation varies by cell 

type, injury location, and severity. Inflammatory mediators 

released after the initial insult influence neuronal survival, 

glial activation, blood–brain barrier integrity, and longer-

term recovery trajectories. 

Rather than following a uniform pattern, cytokine 

responses differ across individuals and injury types. 

Elevations in IL-6, TNF-α, IL-8, IFN-γ, and MCP-1 are 
consistently reported in the acute phase, which may 

contribute to leukocyte infiltration and tissue remodeling. 

Their persistence beyond the initial phase of injury raises 

concern for ongoing immune activation. 

Not all cytokines follow the same trajectory. Reduced 

levels of biomarkers including macrophage inflammatory 

protein-1 beta, interferon-gamma-induced protein-10, and 

interleukin-9 in complicated TBI suggest a divergence from 

typical inflammatory trajectories. These reductions may 

reflect suppressed signalling pathways or selective 

vulnerability of certain immune processes in severe or 
multifocal injuries. The absence of IL-1β elevation in several 

studies aligns with this variation and suggests that pro-

inflammatory cytokine responses are not uniformly 

amplified after TBI. 

Anti-inflammatory cytokines are also detectable 

during the acute phase, with IL-10 showing one of the most 

consistent responses. Its inhibitory effects on IL-1β, TNF-

α, and other cytokines suggest a counter-regulatory role. A 

secondary IL-10 peak in the second week may indicate 
ongoing attempts to resolve inflammation. IL-1ra and IL-

13 are also elevated, while IL-4 displays mixed findings. 

This variability may reflect differences in sampling time, 

patient heterogeneity, or technical limitations in 

measurement. 

Markers of immune activation including CD68 are 

increased in tissue from TBI patients. Elevated CD68 and 

CD68 to Iba-1 ratios suggest enhanced microglial and 

macrophage presence, particularly in regions with high 

fibrinogen deposition. These findings suggest a localized 

inflammatory response linked to vascular disruption. The 

absence of Iba-1 elevation may reflect changes in cell 
phenotype rather than total microglial population. 

The vascular endothelium also appears to be involved. 

Elevations in soluble adhesion molecules, namely sICAM-1 

and sVCAM-1 indicate endothelial activation and a 

disrupted barrier, which may facilitate immune cell 

infiltration. Together with increased sFAS levels, these 

findings point to an interaction between immune and 

apoptotic signalling. 

Elevations in GFAP, UCH-L1, and NFL reflect 

structural injury and glial activation. These markers may 

correlate with clinical severity in several studies, though 
further study is needed to determine their predictive 

reliability. The association of these markers with functional 

outcomes suggests they may be useful in prognosis, although 

further work is needed to determine their reliability across 

populations. 

Histological patterns of increased fibrinogen, reduced 

NeuN staining, and elevated bAPP and IgG signal support 

the presence of ongoing inflammation and structural damage 

beyond the immediate injury site. These patterns are 

consistent with secondary injury mechanisms extending 

beyond the initial trauma. 

Together, these findings support the view that 
neuroinflammation is a sustained feature of TBI. The 

inflammatory response is multifaceted, involving cytokine 

production, immune cell recruitment, endothelial activation, 

and glial involvement. Emerging research has linked these 

biomarkers to neurodegenerative conditions such as 

Alzheimer’s and Parkinson’s disease, suggesting that 

persistent inflammation may increase susceptibility to 

secondary disorders. Interactions between cytokine 

pathways, for example IL-6 affecting MCP-1 expression, 

may amplify neuroinflammatory responses and contribute to 

poorer outcomes. Disentangling these roles remains a key 
challenge. 

The broad range of immune signals detected across 

studies suggests that a single biomarker is unlikely to capture 

the full extent of injury or predict recovery. A more 

informative approach may involve combining panels of 
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cytokines, structural proteins, and clinical indices to develop 

composite prognostic models. These could help stratify 

patients for interventions targeting inflammation. Future 

studies should consider the timing of sampling, injury 

heterogeneity, and regional variation in inflammation when 
evaluating potential therapeutic windows. 

 

Outcomes 

The inflammatory response following TBI in the acute 

phase has important implications for recovery. Prolonged 

elevation of IL-6 and MCP-1 has been associated with poorer 

functional outcomes, suggesting that unresolved 

neuroinflammation may contribute to secondary injury 

processes. In particular, persistent MCP-1 expression likely 

reflects ongoing recruitment of monocytes and macrophages 

into the central nervous system (CNS), which may 

exacerbate tissue damage [11]. 
The detection of activated microglia, especially in 

perivascular regions with fibrinogen deposition, indicates 

that inflammatory activity is not confined to the initial site of 

trauma. This spatial spread of immune activation may 

compromise neighboring neural circuits and disrupt global 

brain function. Overtime, this pattern of immune activation 

may interact with other inflammatory pathways and 

contribute to synaptic dysfunction or promote 

neurodegenerative cascades. Moreover, prolonged 

microglial activation has been implicated in the progression 

of neurodegeneration in other conditions, including 
Alzheimer’s disease and multiple sclerosis, raising concern 

that similar mechanisms may operate post-TBI [10]. These 

findings support the view that inflammatory trajectories 

influence not only acute recovery but also the risk of chronic 

neurological decline. 

 

Implications 

While neuroinflammation is essential for initiating 

repair, clearing cellular debris, and supporting tissue 

recovery, unregulated or prolonged inflammation can have 

damaging effects. Elevated concentrations of 

proinflammatory cytokines IL-6 and TNF-α, along with 
chemokines like MCP-1, are not only linked to worse 

functional outcomes but may also promote sustained 

microglial activation and oxidative stress, contributing to 

long-term neurodegeneration [10, 17]. 

Chronic neuroinflammation following acute TBI has 

been associated with increased risk for neurodegenerative 

diseases including Alzheimer’s and Parkinson’s disease, due 

to its contribution to synaptic dysfunction, neuronal loss, and 

the spread of pathological protein aggregates [18]. In 

addition, ongoing glial activation, infiltration of peripheral 

immune cells, and blood–brain barrier disruption may 
facilitate the spread of inflammatory signals beyond the 

CNS, potentially affecting peripheral organ systems and 

impairing systemic recovery [19]. 

Given these risks, understanding the timing, intensity, 

and regulation of neuroinflammatory responses is essential 

for identifying therapeutic windows and developing 

targeted interventions. Modulating the immune response to 

preserve its protective functions while limiting its harmful 

consequences could improve recovery and reduce the risk 

of chronic neurological and systemic complications. 
 

Conclusions 

Neuroinflammatory biomarkers, including cytokines, 

chemokines, and acute-phase proteins, are consistently 

altered in the acute phase following traumatic brain injury. 

These changes are associated with increased immune 

activation, oxidative stress, and worse functional outcomes. 

Hyperinflammation, particularly persistent elevation of 

mediators, namely IL-6 and MCP-1, can drive secondary 

injury, disrupt neuronal repair processes, and contribute to 

long-term neurological decline. Understanding the timing, 

source, and magnitude of these inflammatory responses is 
critical to identifying therapeutic windows that can reduce 

harm while preserving repair mechanisms. This molecular 

understanding of acute inflammation provides a basis for 

moving beyond symptomatic treatment and toward targeted 

strategies that address the root causes of secondary brain 

injury. In doing so, they help close the gap between trauma 

and recovery in TBI care. Research going forward should 

focus on identifying specific thresholds that distinguish 

helpful from harmful inflammation. Efforts should prioritize 

the development of therapies that reduce excessive immune 

activation while preserving the beneficial effects of 
inflammatory signaling to support recovery and improve 

patient outcomes. 
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bAPP: beta-amyloid precursor protein 
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CNS: central nervous system 
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IFN-γ: interferon-gamma 

IgG: immunoglobulin G 
IL-10: interleukin-10 
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