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Abstract 

Introduction: Osteoarthritis (OA) and osteoporosis are leading degenerative bone diseases that diminish quality of life and 

impose significant socioeconomic costs. Traditional diagnostic approaches, including imaging and bone density assessments, 

often fail to detect disease in its early stages, delaying critical interventions. Emerging artificial intelligence (AI) techniques, 

particularly those employing machine learning (ML) and deep learning (DL), offer promising avenues for early detection and 

more accurate prognostication. 

Methods: We conducted a systematic review of AI models developed between 2018 and 2024, assessing their performance 

in diagnosing and predicting the progression of OA and osteoporosis. Studies utilizing supervised or unsupervised methods 

applied to imaging modalities (e.g., X-ray, MRI, DXA) or clinical data were included. We evaluated model accuracy, 

reliability, clinical applicability, and generalizability. Quality and risk of bias were assessed using a modified CLAIM 

framework, ensuring alignment with transparency, validity, and clinical integration standards. 

Results: Of 2,300 identified articles, 33 studies met the inclusion criteria. Top-performing models for OA reached up to 97% 

accuracy, with one study achieving an AUC of 0.93 for MRI-based progression prediction. For osteoporosis, the strongest 

models attained a C-index of 0.90 using DXA imaging, indicating robust fracture risk prediction. Nevertheless, many studies 

relied on geographically or demographically homogeneous datasets, limiting broader applicability. Only 15% included 

external validation, and a substantial proportion lacked interpretability features essential for clinical adoption. 

Discussion: AI-driven models outperformed conventional diagnostic tools in accuracy and early disease detection. However, 

the limited dataset diversity, infrequent external validation, and insufficient model interpretability pose barriers to clinical 

integration. The reliance on male-dominant datasets for osteoporosis and geographically narrow cohorts for OA underscores 

the need for broader data representation. Standardizing evaluation metrics and improving explainability will enhance cross-

study comparisons and support adoption in practice.  

Conclusion: AI holds transformative potential for improving OA and osteoporosis diagnostics, facilitating earlier 

interventions, and informing personalized patient management. Future work should prioritize diverse, well-validated datasets; 

transparent, clinician-friendly interfaces; and standardized performance metrics. Addressing these challenges will enable AI 

to evolve from a promising innovation into a cornerstone of global musculoskeletal healthcare. 
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Introduction 

Osteoporosis and Osteoarthritis (Epidemiology, 

Pathophysiology, Diagnosis) 

Osteoporosis and osteoarthritis (OA) are two of the 

most prevalent degenerative bone diseases, affecting 

millions of individuals worldwide and placing a substantial 

socioeconomic burden due to healthcare costs and loss of 

productivity [1, 2]. Osteoporosis is a systemic skeletal 

disorder characterized by low bone mineral density, micro-

architectural deterioration of bone tissue leading to more 

porous bone, and a consequent increase in fracture risk [3]. 

OA is the most common joint disorder clinically defined as 

degeneration of joints causing pain, swelling and stiffness, 

affecting a person’s ability to move and activities of daily 

living (ADLs) [4]. Both conditions lead to severe functional 

limitations, increased fracture risk, and lower quality of life 

[5, 6]. Traditional diagnostic methods for these diseases, 

such as magnetic resonance imaging (MRI), X-rays, 

Fracture Risk Assessment Tool (FRAX), and Dual-energy 

X-ray Absorptiometry (DXA), primarily focus on assessing 

structural damage in OA and bone mineral density  

(BMD) in osteoporosis [3, 7]. However, these methods 
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have limitations in accurately predicting disease 

progression and identifying early-stage disease, often 

resulting in delayed interventions [8]. Delayed diagnosis 

allows the degenerative process to continue unchecked, 

resulting in severe cartilage loss and bone damage that 

cannot be reversed [9]. Early detection allows for the 

implementation of therapeutic strategies aimed at slowing 

disease progression, such as pharmacological treatments, 

lifestyle modifications, and physical therapies [9]. 

 

Emergence of Artificial Intelligence 

In recent years, advances in artificial intelligence (AI), 

particularly machine learning (ML) and deep learning (DL) 

have let us better detect and predict the progression of both 

OA and osteoporosis by being capable of analyzing complex 

datasets [10]. AI has been extensively applied to OA 

detection using various imaging modalities like X-rays, CT, 

and MRI, achieving high diagnostic accuracy [11]. Several 

DL models, particularly Convolutional Neural Networks 

(CNNs), have successfully classified OA severity using the 

Kellgren-Lawrence scale, a radiographic grading system that 

assesses factors such as osteophytes, joint space narrowing, 

and subchondral changes to determine OA progression. For 

instance, Muham et al. constructed a deep learning model 

that reached an accuracy of 97% for the early detection and 

classification of knee OA, underscoring the potential of AI 

as an adjunctive tool in radiological assessment [12]. 

Similarly, AI has been used to diagnose osteoporosis, where 

models predict BMD from CT and X-ray with accuracy 

rates ranging from 82% to 96% and is a non-invasive 

approach to DXA scans [13, 14]. Some AI-based Fracture 

Risk Assessment Models (ex., CatBoost) have also 

performed better than conventional tools like FRAX, with 

the added advantage of using more parameters and big data 

[15]. Despite its promise, the application of AI in detecting 

and predicting osteoporosis and osteoarthritis faces several 

challenges. Existing AI models often vary in terms of their 

simplicity of use, reliability, and accuracy, which limits their 

integration into clinical practice [13-15]. Furthermore, many 

models lack a standardized approach to evaluating and 

comparing their performance, making it challenging to 

identify the most effective ones for clinical settings [13-15]. 

The primary aim of this study is to first systematically 

identify supervised and unsupervised AI models developed 

between 2018 and 2024 that utilize imaging modalities or 

clinical data for osteoporosis and OA detection and 

progression. Next, we aim to compare these models based 

on their reliability, accuracy and potential clinical 

applications. From this comparison, we intend to identify 

the top three best-performing models. 

 

Research Aims 

Our research aims to explore two questions. (1) How 

do supervised or unsupervised AI models that utilize 

imaging modalities or clinical data compare to other AI 

models regarding reliability, accuracy, and potential clinical 

applicability for detecting and predicting the progression of 

OA and osteoporosis in adults aged 18 and older? (2) What 

are the top 3 performing AI/ML models developed between 

2018 and 2024 for detecting and predicting the progression 

of OA and osteoporosis in adults, based on reliability, 

accuracy, and potential clinical application? 

 

Methods 

Study Design 

A systematic review was conducted to identify and 

evaluate supervised and unsupervised AI models developed 

between 2018 and 2024 for detecting and predicting the 

progression of OA and osteoporosis in adults. Inclusion and 

exclusion criteria are listed in Table 1. 

 

Table 1. Inclusion Criteria for Studies Developing AI Models Utilizing Imaging Modalities for the Diagnosis and Prognosis 

of Osteoarthritis and Osteoporosis 

Criteria Description 

Study Type  Peer-reviewed studies published between January 2018 and October 2024. Studies not peer-reviewed, 

including conference abstracts, preprints, editorials, reviews, or case reports are excluded. 

Population  Adult patients aged 18 years and older diagnosed with osteoarthritis OA or osteoporosis.  

Intervention  Studies utilizing supervised or unsupervised AI/machine learning models (e.g., CNN, Recurrent Neural 

Networks [RNN]) for disease detection, prediction, or progression tracking.  

Outcomes  Studies reporting performance metrics such as accuracy, precision, recall, F1-score, Area Under the 

Curve (AUC) or Area Under the Receiver Operating Characteristic Curve (ROC-AUC).  

Data Input  Use of imaging modalities (DXA, X-rays, CT scans, MRI) as inputs for AI models. Studies not 

employing imaging modalities or exclusively using clinical/non-imaging datasets are excluded. 

Language Articles in English only. 

Data set  Publicly available “gold standard” datasets. For instance: OAI, MOST, UK biobank, MrOS. Studies not 

using publicly available or validated gold standard datasets (e.g., studies using privately curated or 

inaccessible datasets without transparency) are excluded. 
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In Table 1, please note that “gold standard” datasets 

refer to publicly available, high-quality datasets widely 

recognized and validated for osteoarthritis and osteoporosis 

research. These include datasets such as the Osteoarthritis 

Initiative (OAI) and the Multicenter Osteoarthritis Study 

(MOST) for osteoarthritis and datasets like the MrOS 

(Osteoporotic Fractures in Men Study) and UK Biobank for 

osteoporosis. These datasets serve as benchmarks for 

training and evaluating AI models, as they provide 

comprehensive, well-annotated imaging data and clinical 

information critical for assessing the performance of 

diagnostic and prognostic algorithms. Their established 

reliability ensures a robust foundation for comparing AI 

model outcomes against clinically validated standards. 

 

Data Extraction and Search Strategy 

A comprehensive search was performed across 

multiple electronic databases, including PubMed, CINAHL, 

Web of Science, and Ovid MEDLINE. The search strategy 

combined keywords and Medical Subject Headings 

(MeSH) terms related to AI and targeted diseases. 

Keywords include: “Artificial Intelligence” OR “Machine 

Learning” OR “Deep Learning” AND “Osteoarthritis” 

AND “Osteoporosis” AND “Osteoporotic Fractures” OR 

“Bone Density”. 

The results of these database searches were then 

uploaded to Covidence for both abstract and full-text 

screening. Two authors independently conducted the 

screening, and any disagreements were resolved by 

discussion among the authors. 

 

Results 

Study Selection and Study Characteristics 

The initial database search yielded 2,300 studies, and 

930 duplicates were excluded. All studies underwent 

screening based on their title and abstract, resulting in the 

exclusion of 1304 for not meeting the inclusion and 

exclusion criteria. A total of 66 studies proceeded to full-text 

evaluation. After full-text screening, 33 studies were 

excluded. Following this process, 33 studies were included 

in the final analysis. Conflicts during the selection process 

were resolved through discussion. This review adhered to 

the Preferred Reporting Items for Systematic Reviews and 

Meta-Analyses (PRISMA) guidelines to ensure a transparent 

and replicable methodology [18]. The detailed selection 

process is illustrated in the PRISMA flow diagram (see 

Figure 1). 

 
 

 

 
Figure 1. PRISMA Flow Diagram of the Study Selection Process. The diagram shows the identification, screening, eligibility 

assessment, and inclusion of studies in the systematic review, along with reasons for exclusion at each stage. This figure has 

been created using Covidence. 
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Quality Assessment 

We evaluated studies for quality and risk of bias using a 

modified version of the Checklist for Artificial Intelligence 

in Medical Imaging (CLAIM), which is specifically 

designed to ensure transparency, reproducibility, and clinical 

applicability in AI research [19]. CLAIM includes key 

considerations across six domains: Study Participants and 

Dataset Transparency, Model Development and Design, 

Model Evaluation and Validation, Reporting and 

Transparency, Bias and Generalizability, and Clinical 

Impact and Usability. Adjustments were made to the Bias 

and Fairness domain (renamed Bias and Generalizability) to 

emphasize dataset diversity and real-world alignment, and to 

the Clinical Applicability domain (renamed Clinical Impact 

and Usability) to focus on the potential clinical utility of the 

models. These adjustments better align with the objectives 

of our systematic review. 

Each study was systematically assessed using these 

modified domains (Table 2). Ratings for risk of bias 

were assigned as Low, Moderate, High, or Unclear for 

each domain, with considerations for both the training 

and testing datasets. The distribution of risk levels across 

the six CLAIM domains, as shown in Figure 2, highlights 

trends in the quality and risk of bias among the included 

studies indicating that while internal validation is robust 

in many cases, external validation and practical 

application are often less addressed [19]. 

 

Table 2. Checklist for Artificial Intelligence in Medical Imaging (CLAIM) for Systematic Reviews Focused on AI Models in 

Osteoarthritis and Osteoporosis  

Domain Description 

1. Study Participants and 

Dataset Transparency 

Evaluates whether the study population and datasets are representative of the intended 

clinical population and clearly described.  

2. Model Development 

and Design  

Focuses on the AI model's architecture, training process, and reproducibility of design.  

3. Model Evaluation and 

Validation  

Assesses the metrics used to evaluate model performance, methods to avoid overfitting, and 

external validation to ensure generalizability.  

4. Reporting and 

Transparency  

Ensures that the study is sufficiently transparent to allow reproducibility and that data and 

model details are accessible.  

5. Bias and  

Generalizability  

Focuses on the study's efforts to assess demographic and dataset diversity, relevance to the 

target clinical population, and practical generalizability of results.  

6. Clinical Impact and 

Usability 

Evaluates whether the study provides meaningful insights into the model's potential clinical 

utility, simplicity of integration, and the actionability of predictions for clinicians.  

Notes: This table is adapted from Mongan et al. (2020) “Checklist for Artificial Intelligence in Medical Imaging (CLAIM): 

A Guide for Authors and Reviewers” [19]. 

 

 
Figure 2. Bar Chart of the Percentage Distribution of Studies Evaluated for Risk of Bias Across the Six Domains of the 

CLAIM. Risk levels are categorized as Low (green), Moderate (blue), High (brown), and Unclear (yellow) (n=33, 

studies included). This figure has been created using Microsoft Excel.  

 

Meta-Analysis 

We developed a comprehensive scoring system to 

ensure a fair and consistent comparison of the diagnostic 

and prognostic models for osteoarthritis and osteoporosis 

included in this meta-analysis (Table 3). Since the 

models in the analyzed papers vary widely in terms of 

reported metrics, dataset sizes, validation approaches, 

and other methodological factors, this scoring system 

standardizes the evaluation process across four domains: 

Dataset Quality, Performance, Clinical Applicability, 

and Technical Rigor, each contributing 25 points to a 

total score of 100. The system accounts for variations in 

dataset size, validation methods, metric reporting, 

clinical integration, and reproducibility, while mandatory 
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criteria ensure the inclusion of essential machine 

learning metrics and validation details. This framework 

enables an objective comparison of models, highlighting 

those with the greatest potential for clinical application 

while identifying gaps in current research practices. 

Detailed results for each study, including datasets used, 

numbers of images in training and testing, and model 

scores, are summarized in Table 4 (focused on OA) and 

Table 5 (focused on osteoporosis). 

 

Table 3. Comprehensive Scoring Framework for Evaluating AI Models in OA and Osteoporosis Research Based on Dataset 

Quality, Performance, Clinical Applicability, and Technical Rigor  

Category Criteria Scoring 

Dataset Quality 

Sample Size (10 points) 

>30,000: 10 

10,000-30,000: 9 

5,000-10,000: 8 

1,000-5,000: 6 

<1,000: 4 

Data Quality (5 points) 

Well documented: 5 

Partially documented: 3 

Poor documentation: 1 

Validation (10 points) 

Cross-dataset external: 10 

Multiple external: 9 

Single external: 8 

Internal only: 6 

Performance 

Primary Metrics (15 points) 

Full metrics + CIs + significance: 15 

Full metrics + CIs: 13 

Full metrics only: 11 

Partial metrics: 8 

Secondary Metrics (10 points) 

Comprehensive validation: 9-10 

Basic validation: 7-8 

Limited validation: 4-6 

Clinical 

Integration (10 points) 

Ready for clinical use: 9-10 

Needs minor adaptation: 7-8 

Needs major adaptation: 4-6 

Interpretability (10 points) 

Full interpretability features: 9-10 

Basic interpretability: 7-8 

Limited interpretability: 4-6 

Efficiency (5 points) 

Real-time: 5 

Reasonable: 3 

Slow: 1 

Technical 

Methodology (10 points) 

Comprehensive: 9-10 

Adequate: 7-8 

Limited: 4-6 

Reproducibility (10 points) 

Code/data available: 9-10 

Partial availability: 7-8 

Limited availability: 4-6 

Error Analysis (5 points) 

Comprehensive: 5 

Basic: 3 

Limited: 1 

Mandatory Criteria 

Complete Performance Metrics 

Clear Validation Approach 

Transparent Data Usage 

Comprehensive Model Description 

Error Analysis and Uncertainty 

Clinical Relevance and Clinical Integration Potential 
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Table 4. Comprehensive Overview of Studies Focusing on OA diagnosis and Progression 

First Author Year Imaging 

Modality 

Target Condition Dataset Number of Images Per Set Reference Standard Model Output 

Metrics 

Score 

out of 

100 
Training Validation Testing 

Namiri [20] 2021 MRI Knee OA Progression OAI 3090 

(70%) 

440 (10%) 880 

(20%) 

Radiologist-labeled 

ROAMES phenotypes 

derived from MOAKS. 

AUC, Accuracy 93 

Khalid [21] 2023 X-ray Knee OA Diagnosis OAI 7808 Split into 

subsets 

1958 Radiologist consensus AUC, Accuracy 92 

Tiulpin [22] 2018 X-ray Knee OA Diagnosis OAI, 

MOST 

18,376 

MOST 

2,957  

OAI 

5,960 

OAI 

Radiologist consensus AUC, Average 

Multi-class Accuracy 

91 

Wang [23] 2024 MRI Knee OA Diagnosis OAI 1,271 318 2,503 Radiologist consensus, 

MOAKS 

Accuracy, TPR, 

TNR 

89 

von Schacky 

[24] 

2020 X-ray Hip OA Diagnosis OAI 3,494 437 437 Radiologist consensus AUC, Accuracy 88 

Muhammad 

[25] 

2021 X-ray Knee OA Diagnosis OAI 22,796 7,601 7,599 Radiologist consensus Accuracy, F1 score, 

TPR 

88 

Yoon [26] 2023 X-ray Knee OA Diagnosis OAI 44,193 810 400 Orthopedic and 

radiologist consensus 

Accuracy, F1 score 87 

Salis [27] 2024 X-ray Knee OA Progression OAI, 

MOST 

3,114  

OAI 

606  

OAI 

1,602 

MOST 

Expert consensus KL grading 86 

Guan [28] 2022 X-ray Knee OA Progression OAI 4,200 300 400 FNIH criteria AUC, TPR, TNR 85 

Xu [29] 2024 X-ray Hip OA Progression OAI 528 104 104 Orthopedic consensus AUC, Accuracy, 

TPR, TNR 

84 

Bayramoglu 

[30] 

2021 X-ray Knee OA Diagnosis MOST 18,436 NR NR Expert consensus ROC AUC, Average 

Precision 

83 

Guan [31] 2020 X-ray Knee OA Progression OAI 1,400 150 400 FNIH criteria AUC, TPR, TNR 83 

Almhdie-

Imjabbar [32] 

2022 X-ray Knee OA Progression OAI, 

MOST 

2,740 

OAI, 845 

MOST 

NR NR OARSI grades AUC, Accuracy 82 

Pedoia [33] 2019 MRI Knee OA Diagnosis OAI 2,849 877 658 Expert consensus, KL AUC, TPR, TNR 82 

Jang [34] 2023 X-ray Hip OA Progression OAI 7,672 1,920 1,920 Expert consensus AUROC, AUPRC 82 

Hu [35] 2024 MRI Knee OA Progression OAI 960 NR 240 Radiologist consensus AUC 81 

Leung [36] 2020 X-ray Knee OA Progression OAI 520 104 104 KL, OARSI AUC, TPR, TNR 81 

Chang [37] 2020 MRI Knee OA Diagnosis OAI 1,054 225 226 Radiologist consensus AUC 80 
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First Author Year Imaging 

Modality 

Target Condition Dataset Number of Images Per Set Reference Standard Model Output 

Metrics 

Score 

out of 

100 
Training Validation Testing 

Kinger [38] 2024 X-ray Knee OA Diagnosis OAI 4,000 500 500 Radiologist consensus Accuracy 80 

Li [39] 2024 MRI Knee OA Progression OAI 549 NR 137 Radiologist consensus AUC, TPR, TNR 79 

Lee [40] 2024 MRI Knee OA Progression OAI, 

MOST 

5,966  

OAI 

1,193  

OAI 

3,392 

MOST 

Radiologist consensus AUC, Accuracy, F1 

score 

 

Daneshmand 

[41] 

2024 X-ray Knee OA Diagnosis, 

Prognosis 

OAI 4,279 4279 1070 Radiologist consensus, 

OARSI 

AUC, AP 78 

Norman [42] 2018 X-ray Knee OA Diagnosis OAI 25,873 7,779 5,941 Radiologist consensus TPR, TNR 78 

Brahim [43] 2019 X-ray Knee OA Diagnosis OAI 1,024 NR NR Expert consensus Accuracy, TPR, 

TNR 

77 

Joseph [44] 2022 MRI Knee OA Progression OAI 887 887 157 Radiologist consensus AUC 77 

Costello [45] 2023 MRI Knee OA Progression MOST 663 NR 284 Radiologist consensus AUC 76 

Su [46] 2023 X-ray Knee OA Progression OAI 3,357 NR 1,439 KL grading Accuracy, F1 score 76 

Ntakolia [47] 2021 X-ray Knee OA Progression OAI 4,849 1,213 6,062 Expert consensus AUC, Accuracy 75 

Notes: Studies are ordered from highest to lowest based on our developed scoring framework (Table 3). For the full breakdown of the scores refer to Appendix, 

Table A. 

 

Table 5. Comprehensive Overview of Studies Focusing on Osteoporosis Diagnosis and Progression 

First 

Author 

Year Imaging 

Modality 

Target 

Condition 

Dataset Number of Images Per Set Reference 

Standard 

Model Output 

Metrics 

Score 

out of 

100 
Training Validation Testing 

Lehmann 

[48] 

2024  DXA 

scan 

Osteoporoti

c fracture  

Swiss Osteoporosis 

Registry, UK 

Biobank 

4,755  951 Swiss 

Osteoporosis Registry, 

5,474 UK Biobank  

1,189  Genant SQ 

grading system 

C-index, confidence 

intervals 

90 

Cross [49]  2024  X-ray  Osteoporoti

c fracture  

MrOS  1000  1000  176  Genant SQ 

grading system  

AUC-ROC, TPR, 

TNR, Accuracy 

88 

Chang [50]  2024  X-ray  Osteoporoti

c fracture  

MrOS  6,695  1,310  2,346  Genant SQ 

Grading System  

F1 score 85 

Dong [51]  2022  X-ray  Osteoporoti

c fractures  

MrOS  11,872  1,319  2,333  Genant SQ 

Grading System  

AUC-ROC, TPR, 

TNR, PPV  

83 

Zhang [52] 2019  QCT  Osteoporoti

c fractures  

MrOS  58  20  22  Expert 

consensus, FEA  

MSE, R², SD  66 

Notes: Studies are ordered from highest to lowest based on our developed scoring framework (Table 3). For the full breakdown of the scores refer to Appendix, 

Table B. 
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Figure 3. Mean Performance Metrics of AI Models for Osteoarthritis and Osteoporosis Diagnosis and Prognosis. The bar 

chart illustrates the average values for key performance indicators: AUC, accuracy, TPR (True Positive Rate, sensitivity), 

TNR (True Negative Rate, specificity), and F-1 score across all reviewed studies. Error bars represent the standard deviation 

for each metric, reflecting variability among the models. The data is based on 33 studies included in the systematic review, 

covering AI models utilizing imaging modalities like X-ray, MRI, and DXA. These metrics highlight the overall reliability of 

AI models in this domain. This figure has been created on Microsoft Excel. 

 

Figure 3 presents the mean performance metrics (AUC, 

Accuracy, TPR, TNR, F1 score) reported across 33 studies 

of AI models for OA and osteoporosis diagnosis. As shown 

by the bar chart, the average AUC among the 23 studies 

that reported this metric was 0.86, while the corresponding 

mean Accuracy across 14 studies was 0.84. For sensitivity 

(TPR), the mean value was 0.80 (n=11), and the mean 

specificity (TNR) among the same studies was 0.86. A 

smaller subset of five studies reported F1 scores, averaging 

0.77. The error bars in Figure 3 illustrate the standard 

deviation of these metrics, indicating variability in model 

performance 

 

Discussion 

This systematic review highlights significant 

advancements in AI models for the detection and prediction 

of OA and osteoporosis progression between January 2018 

and October 2024. The analyzed studies demonstrate that 

AI, particularly deep learning techniques, has achieved 

promising diagnostic and prognosis accuracy (Figure 3). 

Conventional methods such as X-rays, MRI, CT scans, and 

DXA scans, while instrumental in visualizing structural 

changes and assessing bone mineral density, have 

significant limitations in early detection and disease 

progression prediction [53]. These limitations arise because 

these methods primarily focus on static assessments of 

structural damage or bone density without capturing the 

complex, multi-dimensional patterns indicative of early 

pathological changes [54]. AI-driven techniques, on the 

other hand, excel by integrating vast datasets to detect 

subtle patterns and anomalies that may escape human 

interpretation [53, 54]. For instance, high-resolution 

imaging modalities like CT and MRI, discussed in the 

literature, provide detailed insights into bone 

microarchitecture and quality, but their application in 

clinical settings remains constrained by accessibility and 

technical challenges, and risk factors of high dose of 

radiation [55]. AI can bridge this gap by enhancing image 

interpretation, facilitating the identification of predictors 

such as trabecular microstructure, cortical porosity, and 

volumetric density, which are critical for assessing fracture 

risk and treatment efficacy [54]. This ability to leverage 

detailed imaging data highlights the ability of AI in 

advancing diagnostic precision and personalized 

prognostication [53-55]. 

 

Interpretation of Results 

The high-performance metrics reported across these 

studies highlight AI's potential to revolutionize 

musculoskeletal diagnostics (Figure 3). The ability of AI 

models to process and analyze complex imaging data 

allows for earlier detection of disease progression, which is 

crucial for timely intervention and improved patient 

outcomes [9]. 

Models that integrated data from multiple sources, such 

as Tiulpin et al. (2018) [22], who utilized both the OAI and 
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MOST datasets, demonstrated improved generalizability. 

This suggests that training AI models on diverse datasets 

enhances their robustness and applicability to different 

populations. Additionally, studies focusing on fracture risk 

prediction rather than solely bone mineral density, like 

Cross et al. (2024) [49], offer practical clinical relevance by 

addressing outcomes that directly impact patient care. 

 

Osteoarthritis 

1. Namiri et al. (2021) achieved an AUC of 0.93 in knee 

OA progression prediction using MRI data from the 

OAI dataset, highlighting AI's capability in early-stage 

detection and disease monitoring. However, its reliance 

on OAI, a dataset predominantly featuring North 

American participants, limits its global applicability 

[20]. 

2. Khalid et al. (2023) employed X-rays with a radiologist 

consensus for grading, achieving an AUC of 0.92. Its 

simplicity of use positions it for clinical adoption, 

though its lack of external validation raises concerns 

about real-world performance [21]. 

3. Tiulpin et al. (2018) utilized X-rays from both the OAI 

and MOST datasets, achieving a multi-class accuracy of 

91%. The inclusion of multiple datasets improves 

generalizability, though interpretability features 

necessary for clinical application remain absent [22]. 

 

Osteoporosis 

1. Lehmann et al. (2024) achieved a C-index of 0.90 using 

DXA scans from the Swiss Osteoporosis Registry and 

UK Biobank. By combining data from diverse sources, 

the study demonstrated robust fracture risk prediction. 

However, the reliance on DXA scans, a less accessible 

imaging modality, limits widespread implementation 

[48]. 

2. Cross et al. (2024) utilized X-rays from the MrOS 

dataset, achieving an AUC-ROC of 0.88. The study 

addressed osteoporotic fracture risk rather than BMD, 

offering practical clinical relevance. However, the all-

male MrOS dataset undermines the model's 

generalizability to female osteoporosis population [49]. 

3. Chang et al. (2024) achieved an F1-score of 0.85 using 

X-rays from the MrOS dataset, emphasizing fracture 

risk prediction. While the large dataset size and robust 

annotation methods are strengths, the gender bias in the 

dataset remains a limitation [50]. 

 

Analysis of Limitations 

Despite these promising advancements, several 

challenges hinder the clinical translation of AI models in 

healthcare. A significant limitation is the reliance on 

homogeneous datasets, such as the Osteoarthritis Initiative 

(OAI) and the MrOS study [56]. These datasets lack 

demographic diversity, OAI is predominantly North 

American, and MrOS includes only male participants, 

raising concerns about the models' applicability to broader, 

more varied populations [56, 57]. This issue is further 

compounded by the global disparities in dataset 

representation, with a significant overrepresentation of data 

from high-income countries like the U.S. and China. Such 

imbalances risk perpetuating healthcare inequities, as AI 

models may fail to generalize effectively to 

underrepresented groups, including women and ethnically 

diverse populations [57, 58]. Addressing these biases 

requires diversifying data sources and implementing robust 

external validation protocols to ensure the relevance and 

fairness of AI applications in clinical settings [57]. 

Another critical issue is the lack of external validation. 

Only 15% of the studies performed cross-dataset external 

validation, which is essential for assessing a model's 

performance in real-world settings (Figure 2). Without 

rigorous external validation, the applicability of these 

models outside controlled research environments remains 

uncertain [57]. 

Furthermore, only 60% of the AI models presented 

potential clinical applicability, with 40% (Figure 2) needing 

more interpretability features crucial for clinical adoption. 

Clinicians must understand the rationale behind a model's 

predictions to trust and effectively integrate them into 

decision-making processes [58, 59]. The absence of 

clinician-friendly interfaces and actionable insights limits 

the practical usability of these models in everyday clinical 

workflows [58]. 

 

Implications for Clinical Practice 

The findings suggest that while AI models have the 

potential to enhance diagnostic accuracy and enable early 

intervention, significant efforts are needed to address the 

current limitations so that they can be integrated into 

clinical practice effectively. Emphasizing dataset diversity 

and conducting thorough external validations are 

imperative for developing generalizable and reliable models 

across various patient populations [59]. 

Improving interpretability is also essential. Models should 

provide transparent decision-making processes and 

actionable outputs that clinicians can readily understand 

and utilize [58, 59]. This will foster trust and facilitate the 

seamless integration of AI tools into existing clinical 

workflows. 

 

Future Considerations 

Future research must focus on several key areas to 

fully realize AI's potential in musculoskeletal healthcare. 

Enhancing dataset diversity is crucial; incorporating a wide 

range of populations in terms of gender, ethnicity, and 

geography will improve the generalizability of AI models. 

Conducting rigorous external validations using independent 

datasets is essential to assess real-world performance and 

ensure reliability across clinical settings [56]. Improving 

interpretability is also a priority; developing models with 

transparent algorithms and providing clear explanations for 

predictions will foster clinician trust and facilitate 
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integration into clinical workflows [55-58]. Standardizing 

metrics and reporting protocols will enable objective 

comparisons between models and studies, promoting 

reproducibility and transparency. Collaborations between 

clinicians, data scientists, and other stakeholders are vital to 

align AI development with clinical needs and ensure that 

these tools are practical and actionable in everyday medical 

practice [58, 59]. By addressing these areas, AI models can 

move closer to becoming indispensable tools in diagnosing 

and managing OA and osteoporosis. 

 

Conclusions 

This review highlights the potential of artificial 

intelligence (AI) in diagnosing and predicting osteoarthritis 

(OA) and osteoporosis progression. The top-performing 

models, such as Namiri et al. (2021) [20] with an AUC of 

0.93 for OA progression and Lehmann et al. (2024) [48] 

with a C-index of 0.90 for fracture risk prediction, 

demonstrate AI's ability to complement clinical workflows, 

enabling earlier detection and personalized care. This 

capability facilitates early detection and supports the 

development of targeted interventions, which can reduce 

the disease burden and associated healthcare costs [2, 54]. 

The study raises important research questions that must 

be addressed to advance the field. One critical question is 

how AI models can be developed to ensure generalizability 

across diverse populations. This involves exploring 

strategies for training models on heterogeneous datasets 

that accurately reflect the global patient population. 

Another significant question is what methods can enhance 

the interpretability of AI models for clinical use. 

Investigating techniques that make AI algorithms more 

transparent and their predictions more explainable to 

clinicians is essential for fostering trust and acceptance. 

Determining how standardized evaluation frameworks can 

be established in AI research is crucial. Identifying 

universal metrics and reporting standards that can be 

adopted across studies will enable objective comparisons 

and improve the reproducibility of research findings. 

By addressing these areas, AI has the potential to 

become an integral component of musculoskeletal 

healthcare, improving diagnosis, informing treatment 

decisions, and ultimately enhancing patient outcomes 

worldwide. The transition from experimental innovation to 

a cornerstone of personalized, equitable healthcare will 

require concerted efforts to overcome current limitations 

and foster widespread clinical adoption. 
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