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Abstract 

Introduction: Glioblastoma (GBM) is an extremely aggressive brain tumor that poses significant challenges to clinical 

oncology. Previous research has discovered that intercellular adhesion molecule-1 (ICAM-1) is expressed in immune cells 

and is one of the most common molecules in the tumor microenvironment. However, the entire scope of ICAM-1 functions 

on immune cells in glioblastoma is still under investigation. This literature review aims to synthesize existing knowledge 

about the role of ICAM-1 on immune cells in GBM progression. 

Methods: This review summarizes research from 1980-2024 using PubMed, OVID Medline, Web of Science, and Google 

Scholar. The following keywords were used to identify the articles focusing on the role of ICAM-1 on immune cells in 

glioblastoma: “glioblastoma”, “ICAM-1”, “CD54”, “macrophages”, “lymphocytes”, “dendritic cells”, and “natural killer 

cells”. Studies that primarily focus on ICAM-1 expression and function within the tumor microenvironment were selected. 

Results: Immune cell expression of ICAM-1 in the GBM microenvironment may exhibit both pro- and anti-tumor effects. In 

tumor-associated macrophages, ICAM-1 upregulation regulates polarization and immunosuppression. In dendritic cells, 

decreased ICAM-1 expression may hinder anti-tumor responses by limiting T cell activation. The role of ICAM-1 in tumor-

infiltrating lymphocytes remains unclear. In neutrophils, ICAM-1 upregulation may promote immune suppression by 

reducing T-cell activity. The decreased ICAM-1 levels on NK cells in GBM may lead to NK cell exhaustion. 

Discussion: The radio-chemotherapy has differential effects on ICAM-1 functions and, to some extent, affects the 

interpretation of findings. In turn, the alteration of ICAM-1 expression also influences the effectiveness of GBM radio-

chemotherapy and the composition of the tumor microenvironment. The corticosteroid administration and tumor types are 

also factors affecting immune cell activity and composition. 

Conclusion: This review inspires innovative therapeutic strategies to improve treatment outcomes and patient prognosis for 

glioblastoma, as well as provides potential directions for future research on ICAM-1 for glioblastoma. 
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Introduction 

Glioblastoma (GBM) is a highly aggressive malignant 

brain tumor, accounting for approximately 16% of primary 

malignant brain tumors [1–3]. The median progression-free 

survival of patients is only 7 months, and the median 

overall survival is 14 months, with a five-year survival rate 

of less than 5% [3–5]. The current standard care for GBM 

is the surgical removal of tumor sites as safely and 

extensively as possible, followed by radiotherapy and 

chemotherapy [3]. Nevertheless, it fails to prevent the 

postoperative recurrence of GBM [6]. Therefore, it is 

essential to comprehensively understand the factors 

influencing treatment and their mechanisms to develop 

targeted therapeutic approaches for GBM. 

There are various challenges in GBM treatment. 

Increasing research evidence suggests that the tumor 

microenvironment (TME) plays a significant role in immune 

evasion, and tumor progression [7]. TME refers to the 

dynamic ecosystem surrounding the tumor that constantly 

interacts with tumor cells, including immune cells, non-

immune cells, extracellular matrix, signaling molecules, etc. 

[8]. The GBM TME is highly immunosuppressive, with 

immune cells being a crucial contributor to immune 

suppression. The immune cells of TME are composed of 

tumor-associated microglia/macrophages (TAMs), tumor-

infiltrating lymphocytes (TILs), natural killer (NK) cells, 

neutrophils, and dendritic cells (DCs) [8]. TAMs constitute 

the majority of immune cell components in GBM TME, 

accounting for approximately 30% [9]. TILs are less abundant 

in GBM, and the proportion of anti-tumor CD8+ T cells is 

lower and exhibits an exhausted phenotype [10]. NK cells 

recognize and kill tumors by cytotoxicity, but their activity is 
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largely suppressed in GBM [8]. Neutrophils are associated 

with tumor progression and treatment resistance [11,12]. 

Finally, the role of DCs in GBM remains unclear, but they are 

thought to mediate T cell activation through antigen 

presentation, possibly in the brain or draining cervical lymph 

nodes [13]. 

One of the most common molecules participating in cell 

adhesion expressed in the TME is intercellular adhesion 

molecule-1 (ICAM-1, also called CD54) [14]. ICAM-1 is a 

transmembrane glycoprotein that belongs to the 

immunoglobulin superfamily [14]. ICAM-1 is typically 

expressed at low concentrations in epithelial cells, 

endothelial cells, and immune cells at baseline, with 

upregulation by pro-inflammatory cytokines [14]. The 

binding of endothelial ICAM-1 and its ligands lymphocyte 

function-associated antigen-1 (LFA-1) and macrophage-1 

antigen (Mac-1) on leukocytes triggers transendothelial 

migration, promoting the recruitment of immune cells [14]. 

In addition, ICAM-1 regulates the effector functions of 

immune cells by involving the formation of immunological 

synapses to assist T cell activation and acting as a signaling 

molecule to regulate macrophage phagocytosis and NK cell 

cytotoxicity [15–17]. In the GBM microenvironment, ICAM-

1 has a dual role. For instance, GBM cells express ICAM-1 

to recruit tumor-associated macrophages to produce 

cytokines that enrich the tumor microenvironment and 

accelerate tumor invasion [18]. ICAM-1 expressed by 

vascular endothelial cells in TME increases the infiltration of 

effector lymphocytes, yet angiogenesis factors downregulate 

its expression in GBM [19]. However, as it stands today, 

there is very limited research that explores how ICAM-1 in 

immune cells participates in the progression of GBM despite 

its expression and functionality in immune cells. Therefore, 

this review will focus on the potential role of ICAM-1 

expressed in immune cells in glioblastoma and how it might 

influence tumor progression. 

 

Methods 

PubMed, OVID Medline, Web of Science, and Google 

Scholar were the four databases used to conduct this literature 

review. PubMed and OVID Medline cover peer-reviewed 

journals in biomedicine and life sciences. Web of Science and 

Google Scholar serve as interdisciplinary databases to ensure 

the inclusion of literature that was not retrieved by the first 

two. The search strategy for the literature review included 

combinations of keywords and synonyms with Boolean 

operators such as “glioblastoma,” “ICAM-1,” “CD54,” 

“macrophages,” “lymphocytes,” “dendritic cells,” and 

“natural killer cells.” The inclusion criteria were peer-

reviewed publications written in English and dated between 

1980 and 2024 to secure quality and coverage. 64 results were 

found. The exclusion criteria were publication in conference 

abstracts, research protocol, comment articles, etc., which did 

not provide experimental data. In addition, by carefully 

reading the abstracts and main text, publications that did not 

primarily focus on the expression of ICAM-1 on immune 

cells in the context of GBM were also excluded to ensure 

relevance. Additional relevant sources were identified by 

reviewing the bibliography. The literature review ultimately 

included six articles. Table 1. shows a summary of search 

results. 

 

Table 1. Summary of the articles focusing on ICAM-1expression on immune cells in glioblastoma 

Study Immune cell type Type of study Role of ICAM-1 

Bunonfiglioli et 

al. [20] 

Microglial cells In vivo and in 

vitro 

⚫ let-7 helps to activate anti-tumor lymphocytes by 

increasing antigen-presenting molecules, including 

ICAM-1. 

⚫ In GBM, let-7 was downregulated, as was the 

expression of ICAM-1 and the antigen-presenting 

ability of microglia. 

Ogden et al. [21] Monocytes and 

monocyte-derived 

dendritic cells 

In vitro ⚫ ICAM-1 participated in antigen presentation and 

assisted T cell activation. 

⚫ Circulating monocytes in GBM patients expressed 

decreased ICAM-1 levels and were less able to 

differentiate into mature DCs. 

Cheng et al. [22] Dendritic cells In vitro and in 

vivo 

⚫ ICAM-1 participates in antigen presentation and 

assists T cell activation. 

⚫ Decreased ICAM-1 levels would lead to immune-

tolerant DCs to inhibit T cell activation.  

Wang et al. [23] Dendritic cells In vitro and in 

vivo 

Increased expression of ICAM-1 on DC nanovaccines 

enhances the migration of DCs to draining lymph nodes. 

Kuppner et al. 

[25] 

Tumor-infiltrating 

lymphocytes 

In vitro No ICAM-1 expression was found on TILs. 

Roussel et al. [26] Tumor-infiltrating 

lymphocytes 

In vitro ICAM-1 expression might relate to Th2 differentiation.  
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Results 

Tumor-Associated Macrophages/Microglia 

TAMs comprise monocyte-derived macrophages and 

central nervous system-resident microglia originating from 

the yolk sac [9]. The literature search reveals limited studies 

on TAM ICAM-1 in the context of GBM, among which 

there is only one study related to microglia expressing 

ICAM-1. In this study, Bunofilioli et al. cultured microglial 

cells from wildtype and Toll-like receptor 7 knockout mice 

with lethal-7 (let-7) microRNAs (miRNAs), which was 

abundant in normal brains but downregulated in GBM [20]. 

Subsequently, they used fluorescence-activated cell sorting 

to analyze the expression of major histocompatibility 

complex (MHC) I, MHCII, and ICAM-1 [20]. The 

expression of ICAM-1 was upregulated by let-7 miRNAs 

with reduced tumor size [20]. ICAM-1 was considered to aid 

in antigen presentation to lymphocytes in the facial nerve 

transection model [26]. Therefore, ICAM-1 may activate T 

and NK cells to promote anti-tumor responses. 

For macrophages in GBM TME, no literature was 

found on the role of macrophage ICAM-1 expression in 

GBM. However, in other cancer and disease models, the 

expression of ICAM-1 has been shown to regulate the 

polarization of macrophages. There are two macrophage 

polarization states, including classical M1 phenotype and 

alternative M2 phenotype [9]. The former promotes host 

defense and tumor rejection, whereas the latter displays an 

anti-inflammatory phenotype favoring immune suppression 

and tumor progression [9]. Gu et al. discovered that siRNA 

transfection downregulated the expression of ICAM-1 in 

mouse macrophage line RAW264.7, which indicated a shift 

towards M1 polarization [15]. The pathways related to such 

an alteration included the regulation of miR-124 by ICAM-

1 and the direct regulation of MCP-1 by miR-124 [15]. 

They also found that miR-124 was most abundant in the 

brain tissues of ICAM-1 wildtype mice [15]. Some 

evidence suggests that the downregulation of miR-124 in 

GBM promotes tumor invasion, whereas miR-124 

upregulation inhibits tumor cell proliferation [27,28]. In this 

case, the expression of ICAM-1 on macrophages is 

involved in regulating miR-124, which affects macrophage 

polarization and GBM invasion. On the contrary, in the 

study by Yang et al., the absence of ICAM-1 in mice with 

colorectal cancer led to increased efferocytosis in 

macrophages, which induced M2 polarization and increased 

macrophage infiltration, as well as the secretion of 

cytokines such as interleukin 13 (IL-13), IL-10, and 

transforming growth factor-beta (TGF-β), promoting 

metastasis [29]. Therefore, ICAM-1 appears to regulate 

macrophage polarization through distinct mechanisms. 

 

Dendritic Cells 

DCs are antigen-presenting cells crucial for activating 

T cells and anti-tumor responses within the GBM 

microenvironment. DCs in TME capture exposed tumor 

antigens, migrate to draining lymph nodes, and present 

processed antigenic peptides via the MHCI and II 

molecules [30]. With the assistance of co-stimulatory and 

accessory molecules, naive T cells recognizing the peptide-

MHC complexes are activated and differentiated into 

cytotoxic T lymphocytes (CTLs) and helper T (Th) cells, 

which elicits anti-tumor responses and trigger tumor cell 

lysis [30]. 

In other disease models, ICAM-1 promotes T cell 

priming, migration, survival, and effector memory by 

binding to LFA-1 on T cells and is critical for the formation 

of the immunological synapse [31-33]. The search results 

uncovered three articles related to DC ICAM-1 expression 

and its contribution to the effector function of DCs as well 

as the efficacy of DC vaccines in GBM background. Ogden 

et al. measured the proportion of circulating immune cells 

in GBM, brain metastasis, and healthy controls, then 

characterized the expression of surface molecules on 

peripheral monocytes and monocyte-derived dendritic cells 

using antibodies [21]. The researchers found a significantly 

increased percentage of circulating monocytes in GBM 

patients, characterized by decreased expression of antigen-

presenting molecules, including ICAM-1, and DC 

differentiation molecules [21]. These separated peripheral 

monocytes displayed a lower ability to differentiate into 

mature DCs [21]. There was a reduction of antigen-

presenting molecules, including ICAM-1, on immature 

DCs, which might lead to decreased functional DCs and 

dampened T cell activation and proliferation [21]. 

Therefore, in GBM, the reduction in ICAM-1 expression 

may be associated with weakened DC effector functions. In 

the study of Cheng et al., they co-cultured DCs isolated 

from the bone marrow of transgenic EGFP-BALB/c nude 

mice with RFP-expressing human glioma stem cell (GSC) 

line in vitro using dual fluorescence tracking [22]. After co-

culturing with GSCs, DCs exhibited a malignant phenotype 

that promoted tumor growth, indicating the reprogramming 

of DCs by GSCs [22]. These DCs expressed lower levels of 

ICAM-1 and other co-stimulatory molecules [22], which 

decreased the functions of DCs and led to an immune-

tolerant phenotype [22]. Immune-tolerant DCs may lead to 

the induction of anergy T cells and differentiation of Tregs, 

promoting immunosuppression [34]. The immune-tolerant 

DCs may indicate that in GBM, ICAM-1 on DCs would 

facilitate antigen presentation and T cell activation, while 

reduced ICAM-1 on DCs is likely to be a mechanism of 

GSC reprogramming to enhance immunosuppressive TME 

and inhibit T cell-mediated anti-tumor responses. 

Additionally, in a recent study, Wang et al. developed a 

novel DC-based nanovaccine [23]. They used Cu2-xSe 

nanoparticles to trigger apoptosis of tumor cells and the 

exposure of tumor-associated antigens (TAAs) [23]. The 

TAA-loaded nanoparticles induced the expression of ICAM-

1 and other surface molecules on mature DCs [23]. The 

prepared nanovaccine combined TAA-loaded nanoparticles 

with the mature DC membranes [23]. The Dil-traced 

nanovaccines improved homing ability and accumulated in 

https://www.urncst.com/
https://doi.org/10.26685/urncst.626


UNDERGRADUATE RESEARCH IN NATURAL AND CLINICAL SCIENCE AND TECHNOLOGY (URNCST) JOURNAL 

Read more URNCST Journal articles and submit your own today at: https://www.urncst.com 

 

Cui | URNCST Journal (2024): Volume 8, Issue 7 Page 4 of 10 

DOI Link: https://doi.org/10.26685/urncst.626 

the lymph nodes of mice bearing the GL261 glioma cell 

line, which promoted tumor rejection and delayed the 

progression of GBM [23]. The above evidence shows that 

elevating ICAM-1 molecules on the DC surface promotes 

DC abilities in antigen presentation and homing to lymph 

nodes, which better activates anti-tumor T cells and 

effectively improves the efficacy of DC vaccines. Therefore, 

increasing DC ICAM-1 expression during the generation of 

DC vaccines is likely to be helpful for GBM treatment. 

 

Tumor-Infiltrating Lymphocytes 

TILs are an immune cell population less abundant in 

GBM than other immune cell types [35]. The activation and 

differentiation of CD4+ T and CD8+ T cells mediate anti-

tumor responses and are associated with improved 

prognosis [19]. In other cancers, enhanced expression of 

ICAM-1 promoted the cytotoxicity of T cells and tumor 

lysis. In thyroid cancer, CD4+ lymphocytes after OK-

432/fibrinogen treatment showed high expression of 

ICAM-1 and high cytotoxicity, while anti-ICAM-1 

antibodies suppressed interferon gamma (IFN-γ) secretion 

and inhibited tumor cell lysis mediated by T cells [36]. 

Besides, in mice bearing with tumor cells from colorectal 

carcinoma or melanoma, ICAM-1 on CD8+ T cells 

facilitated CD8+ T cells activation, proliferation, and 

effector functions, which boosted systematic anti-tumor 

reactions during radiotherapy [37]. These pieces of 

evidence demonstrated that the expression of ICAM-1 on T 

lymphocytes could induce cytotoxicity and tumor lysis. 

However, whether ICAM-1 plays the same role in GBM 

remains unknown, and the search results showed 

inconsistent results. Kuppner et al. collected brain tissue 

samples from patients with GBM, healthy individuals, and 

patients with brain metastasis [24]. The monoclonal 

antibodies followed by immunoperoxidase staining were 

used to characterize the expression of surface molecules on 

TILs. The results did not find significant changes in ICAM-

1 expression on TILs [24]. In another research by Roussel 

et al., TILs extracted from the tumor tissues of GBM 

patients without receiving chemo- or radiotherapy were 

analyzed by monoclonal antibodies and flow cytometry 

[25]. The results suggested elevated levels of ICAM-1 on 

TILs in GBM tumor tissue were associated with increased 

IL-4 and granulocyte-macrophage colony-stimulating factor 

(GM-CSF) production and may skew the differentiation of 

the TIL population to anti-tumor phenotype [25]. 

 

Neutrophils 

As a part of innate immunity, neutrophils capture 

and kill invading pathogens via phagocytosis, degranulation, 

and secretion of neutrophil extracellular traps consisting of 

DNA and serine proteases [11]. Although only a small 

proportion of neutrophils infiltrated into the tumor tissue of 

GBM, it indeed plays an important role [11]. However, the 

search results reveal that the role of neutrophils expressing 

ICAM-1 in the context of GBM is a blank area. Other disease 

models suggest that the expression of ICAM-1 on neutrophils 

may be related to suppressed T cell activity. In human gastric 

cancer, the upregulation of ICAM-1 in tumor-associated 

neutrophils was associated with activation of GM-CSF-

mediated Janus kinase (JAK)-signal transducer and activator 

of transcription protein 3 (STAT3) signaling pathway 

transduction [38]. In GBM, GM-CSF synthesized in the brain 

decreased lymphocyte proportion but increased neutrophil 

proportion [39]. Therefore, neutrophil ICAM-1 may inhibit 

the infiltration of T lymphocytes via GM-CSF mediated 

JAK-STAT3 pathway activation. Additionally, in a mouse 

endotoxemia model, upregulation of ICAM-1 on neutrophils 

enhanced phagocytosis through increased interaction with 

ICAM-1-fibrinogen and activation of the tyrosine-protein 

kinase signaling pathway [40], which might help clear 

apoptotic tumor cells and promote tumor development [41]. 

Furthermore, the upregulation of ICAM-1 increases reactive 

oxygen species (ROS) production [40]. ROS is believed to 

decrease T cell NF-kB activation, downregulate surface T 

cell receptor/CD3ζ, and inhibit T cell proliferation, leading to 

T cell exhaustion in GBM, thus contributing to an immune-

suppressive tumor environment [42]. Therefore, in GBM, 

ICAM-1 expression on neutrophils may reduce tumor 

antigen exposure and facilitate tumor progression by 

promoting the clearance of apoptotic tumors; it may also 

increase ROS production, thereby reducing the activity of 

anti-tumor T cells and favoring immunosuppressive 

microenvironment. 

 

Natural Killer cells 

NK cells are important cytotoxic lymphocytes in the 

innate immune system. They kill virus-infected cells and 

tumor cells by releasing perforin and inducing cell apoptosis 

through death receptor signaling. They also promote 

inflammation and anti-tumor responses by releasing the pro-

inflammatory cytokine IFN-γ [8]. The interaction between 

ICAM-1 and its receptors LFA-1 and Mac-1 is considered as 

co-stimulatory signals driving NK cell cytotoxicity to tumor 

cells in other disease models [17]; thus, NK cell ICAM-1 

may mediate the cytotoxicity of NK cells in GBM. Research 

done by Schierloh et al. demonstrated that under 

inflammatory conditions, IL-2 stimulation led to upregulation 

of ICAM-1 expression on NK cell surfaces, and NK cells 

with high ICAM-1 expression were the primary producers of 

IFN-γ [43]. Additionally, ICAM-1 expression on NK cells 

serves as a co-stimulatory molecule mediating T cell 

activation and expression of Th1 gene profiles [43]. In the 

immunosuppressive microenvironment of GBM, NK cells 

produce lower levels of IFN-γ and display exhausted 

functions, which may be related to the downregulation of NK 

cell ICAM-1 [44]. 

 

Discussion 

The role of ICAM-1 on immune cells in GBM remains 

unexplained. The present review suggests that ICAM-1 on 

immune cells may be a double-edged sword. The 
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dysregulation of ICAM-1 expression would be a potential 

mechanism underlying the immunosuppression and 

allowance of progression in GBM. On the one hand, the 

dysregulation of ICAM-1 on TAMs is associated with 

TAM polarization and efferocytosis. M2 polarized TAMs 

are the primary immunosuppressive immune cells in GBM; 

they secrete anti-inflammatory cytokines, such as IL-10 and 

TGF-β from M2 TAMs, exhaust CTL functions, and favor 

differentiation of Tregs to enhance the immunosuppressive 

nature of the GBM microenvironment, thus allowing for 

immune evasion [45]. Other M2 TAM secretory molecules 

can maintain GSC proliferation, support angiogenesis, 

increase invasiveness, and facilitate the epithelial-

mesenchymal transition of tumor cells, all contributing to 

GBM progression [45]. Moreover, the ICAM-1 expression 

on neutrophils might promote immune evasion by reducing 

antigen-presenting ability and inducing the production of 

ROS to inhibit T cell-mediated antitumor responses. On the 

other hand, microglial ICAM-1 may activate T 

lymphocytes and NK cells to promote antitumor responses, 

and GBM perhaps hampers antigen presentation by 

decreasing ICAM-1 on microglial cells. The reduction of 

ICAM-1 on DC by GBM reprogramming might decrease 

the antigen presentation, affect migration to lymph nodes, 

and induce immune-tolerant DCs to inhibit CTL activation 

and skew to Treg differentiation, thereby promoting 

immune evasion of GBM and allowing tumor growth. 

Furthermore, the downregulation of ICAM-1 on NK cells 

may be associated with depleted cytotoxicity, which is 

likely also a mechanism of immune evasion in GBM. 

In the two studies on the ICAM-1 expression on TILs, 

there was inconsistency in the results. One showed no 

presence of ICAM-1 on TILs [24], while the other 

demonstrated a subset of TILs expressing ICAM-1 [25]. A 

possible explanation is the methodology difference. 

Kuppner et al. used immunohistochemistry to visualize the 

expression of surface molecules [24], but Roussel et al. 

applied flow cytometry for immunophenotyping [25]. 

Compared to the former approach, flow cytometry has 

higher sensitivity in detecting low-expressing surface 

molecules, thus it would be advantageous to detect the 

presence of ICAM-1 on immune cell membranes [46]. 

Additionally, compared to other cancer models, the results 

from Roussel et al. suggest that TILs in GBM exhibit a 

phenotype with lower antitumor efficiency [25]. One 

possible explanation is the difference in whether radio- and 

chemotherapy are administered. Furthermore, Lecoultre et 

al. demonstrated that radiotherapy-temozolomide treatment 

increased macrophage phagocytic activity and efferocytosis 

in GBM, which might promote pro-tumor reactions [47]. 

The effects of radio- and chemotherapy on immune cells 

seem consistent with ICAM-1, and the study by 

Kesanakurti et al. highlights the effects of ICAM-1 

expression induction by radiotherapy [48]. These pieces of 

evidence suggest that ICAM-1 on immune cells might 

influence the effectiveness of radio-chemotherapy, and 

selectively targeting the expression of ICAM-1 could 

synergize the standard treatment of GBM. 

In Ogden et al.‘s study on monocyte-derived dendritic 

cells, corticosteroids influenced immune cells [22]. During 

perioperation and treatment, corticosteroids are a kind of 

drug commonly used to relieve cerebral edema and 

unpleasant symptoms induced by radio-chemotherapy, such 

as nausea and headache [49]. However, much literature 

suggests that chronic administration of corticosteroids is 

associated with shortened survival and poorer prognosis in 

patients with GBM [49-51]. This reveals that we should 

carefully monitor corticosteroid administration during 

GBM treatment. In addition, corticosteroids induce 

downregulation of endothelial ICAM-1 while enhancing the 

endothelial barrier, and this may be the mechanism of 

decreasing lymphocyte infiltration and dampening 

inflammation [52]. However, in GBM, the decreased 

lymphocyte infiltration, especially CD8+ T lymphocytes, is 

not helpful for tumor rejection. ICAM-1 on immune cells is 

essential for shifting between immunosuppression and 

immune activation, involving antigen-presenting, T cell 

activation, TAM polarization, etc. Although the existing 

evidence is not sufficient to prove that downregulation of 

ICAM-1 by corticosteroids aggravates immunosuppression 

in GBM, the potential adverse effects of steroids suggest 

that the dose of steroids applied should be carefully 

considered and the immune status should be closely 

monitored in the treatment of GBM patients. At the same 

time, specifically targeting immune cell ICAM-1 to 

enhance the anti-tumor function and inhibit pro-tumor 

response may be more effective in assisting GBM therapy 

and improving prognosis, but this needs to be further tested 

through experiments. 

In addition, the impact of ICAM-1 in the regulation of 

macrophage polarization may vary across different 

microenvironments, which could activate different pathways 

and have varying effects on the functions of immune cells, 

leading to differences in outcomes in various disease models 

[15,24]. For example, lipopolysaccharides and pro-

inflammatory cytokines such as IL-1β, tumor necrosis factor-

alpha, and IFN-γ induce ICAM-1 expression, potentially 

promoting M1 polarization in endotoxemia [9,14]. 

Conversely, secretion of growth factors like vascular 

endothelial growth factor upregulates ICAM-1 expression 

but may contribute to M2 polarization [53,54]. GBM models 

with ICAM-1 deficiency, specifically in TAMs, neutrophils, 

and NK cells, are still lacking. The existing evidence is based 

on other cancer models involving colorectal cancer 

(macrophages), thyroid cancer (CD4+ T lymphocytes), 

melanoma (CD8+ T lymphocytes), and gastric cancer 

(neutrophils). Although the types of infiltrating immune cells 

in other cancers are similar, their proportions are entirely 

different. For example, Tregs and TAMs are the most 

abundant infiltrating immune cells in digestive tract tumors 

[55]. Melanoma and its brain metastasis exhibit abundant 

infiltration of T cells and neutrophils and relatively less 
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macrophage infiltration, making melanoma have a better 

response to immunotherapy than other cancers. In contrast, in 

GBM, macrophages and microglia account for the highest 

proportion of immune cells in GBM TME, and they are 

responsible for poor immunotherapy efficacy and strong drug 

resistance to immune checkpoint inhibitors and CAR-T 

therapy [56]. The differences also suggest that inhibiting M2-

polarized TAM functions, increasing CTL and NK cell 

infiltration, and reducing neutrophil infiltration may be a 

more appropriate strategy conducive to GBM 

immunotherapy. Additionally, compared with peripheral 

tumors, the blood-brain barrier (BBB) is a major obstacle in 

the treatment and drug delivery of brain diseases. Although 

the BBB is partially destroyed in GBM, it maintains integrity 

in most areas [57]. Therefore, the BBB is a factor that needs 

to be considered when designing drugs for GBM therapy. 

Furthermore, the present literature review has some 

limitations. Firstly, in the six retrieved articles, the types of 

immune cells investigated skew to dendritic cells and 

lymphocytes, while there is a lack of exploration of other 

immune cell types. In addition, some studies need more 

functional experiments and more direct and robust evidence 

to demonstrate the significant role of immune cell ICAM-1 

in GBM, which, to some extent, limits the interpretation of 

the results. Furthermore, the administration of radio-

chemotherapy and heterogeneity of the microenvironment 

may also partially restrict the generalization of findings 

from other disease models to GBM. Therefore, it is 

necessary to experimentally validate the role of immune 

cell ICAM-1 in the context of GBM. 

Nevertheless, the current literature review integrates the 

existing relevant studies to discuss the effects of ICAM-1 

expressed on various immune cells in the context of GBM, 

contributing to a deeper and more comprehensive 

understanding of the GBM immune microenvironment. 

ICAM-1 may be a biomarker of GBM immune status. The 

differences between GBM and other cancers suggest that 

developing more targeted treatment strategies for GBM may 

help amplify treatment effects and extend patient survival. 

The dual role of ICAM-1 on immune cells also reveals that 

assistance of immunotherapy specifically targeting immune 

cell ICAM-1 may be more effective when applying standard 

management to treat GBM. For instance, enhancing ICAM-

1 on lymphocytes, DCs, or NK cells to strengthen their 

effector functions and to boost the impacts of immune cell 

therapy in GBM; it is also possible to regulate the 

expression of ICAM-1 on TAMs to alleviate the 

immunosuppression in GBM TME. Furthermore, the 

potential negative effects of corticosteroids in treating GBM 

suggest the need to monitor immune status and develop 

safer drugs to prevent excessive immune suppression. 

 

Conclusions 

This literature review elucidates the complex role of 

ICAM-1 on immune cells in GBM, which could facilitate 

tumor remission by enhancing antigen presentation, T cell 

activation, and NK cell cytotoxicity and contributes to 

immune evasion by regulating TAM M2 polarization and 

neutrophil functions. For future directions, we should 

further validate the dual role of ICAM-1 by using CRISPR-

Cas-9 or Cre-Lox technology to generate ICAM-1 knockout 

in specific immune cell types and examine the effects on 

GBM progression in vivo, which could help further define 

the appropriate therapeutic strategies. Moreover, it is 

necessary to explore the impact of selective targeting of 

immune cell ICAM-1 on GBM development and whether it 

would enhance radio-chemotherapy. In addition, when 

studying models of brain tumors including GBM, 

considering the administration of corticosteroids and the 

effects of targeting ICAM-1 may more reasonably mimic 

the context of TME in patients with GBM. Moreover, the 

upregulation of ICAM-1 helps to enhance the tumor 

rejection by DC vaccine, and whether increasing ICAM-1 

expression would assist immune cell therapies, such as 

CART-T therapy and NK vaccine in GBM, is also worth 

verifying in animal models. The development of additional 

options for GBM treatment potentially helps improve 

patient management and prognosis, provide alternatives for 

patients resistant to current therapy, and develop 

personalized treatment. 
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