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Abstract 

Introduction: Regulatory T cells (Tregs) are a subpopulation of CD4+ T lymphocytes that contribute to immune homeostasis 

by suppressing excessive immune activation. However, these immunosuppressive properties can lead to the suppression of 

anti-tumor immune responses. Depletion or blocking of Tregs through therapeutics has emerged as a possible method for 

enhancing anti-tumor immunity. However, the lack of selective targeting of Tregs in the tumor microenvironment is a 

significant limitation to the effectiveness of Treg therapies. Therefore, this investigation aims to review current literature on 

how Tregs suppress the antitumor immune response and how they can be targeted to promote anti-tumor immunity. 

Methods: This review examines recent literature on Tregs in the tumor microenvironment, focusing on both cell-contact 

dependent and independent mechanisms. Clinical trial studies were also included to assess therapeutic targeting of Tregs. The 

PubMed database was systematically searched for English articles from 2010 to present, supplemented by manual searches 

without date restrictions. Boolean expressions ensured comprehensive study retrieval. 

Results: The involvement of Tregs in the development of multiple cancer types is evident, and targeting these cells could 

potentially enhance the efficacy of antitumor immunity. In addition, we compiled a list of the novel approaches currently 

being used for Treg targeting in the context of cancer. 

Discussion: This review has identified the most promising targets for Treg-based therapies, opening avenues for accelerating 

the development of innovative cancer treatments. 

Conclusion: Our literature review offers insights into the complex interplay between the immune system and cancer. The 

understanding of this interaction is not just an endpoint but could potentially act as a steppingstone towards new scientific 

discoveries. 
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Introduction 

Regulatory T cells (Tregs) are a subset of CD4+ T 

lymphocytes crucial in maintaining immunological 

homeostasis [1]. Tregs serve to maintain immunological 

self-tolerance, which they achieve, by suppressing the 

activation and proliferation of effector T cells. This 

prevents the onset of autoimmunity, ensuring self-antigens 

do not elicit an immune response. While Tregs are present 

throughout the body, they are most abundant in 

immunologically active regions, such as the lymph nodes 

and spleen, where they modulate immune reactions [2]. 

The suppression mechanisms of Tregs are 

multifaceted, conducted through both cell-contact 

dependent and independent mechanisms. The dependent 

mechanisms require direct physical interaction between 

Tregs and their target cells, such as Tregs interacting with 

effector T cells, using pathways such as cytoxic T-

lymphocyte associated protein 4 (CTLA-4). While cell-

contact independent mechanisms do not require direct 

interactions with target cells but instead rely on the 

secretion of immunosuppressive cytokines, such as TGF-B 

and IL-10, to prevent excessive immune responses that can 

be detrimental to the body [3, 4]. 

Immune surveillance, a continuous process by which 

the immune system identifies and eliminates malignant 

cells, is essential in cancer prevention [5]. Yet, tumors can 

exploit the essential immunosuppressive properties of 

Tregs, leading to the formation of an immunosuppressive 

tumor microenvironment (TME), where Tregs support 

tumor cells in evading immune surveillance and allow their 

unchallenged growth, by suppressing the effector functions 

of anti-tumoral immune cells [6-8]. 

An overabundance of Tregs, particularly within the 

TME, often aligns with advanced tumor stages and poorer 

patient prognosis. This is particularly evident in cancers 

such as gastric, intestinal, and breast cancer where an 
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increased presence of Tregs often correlates with poorer 

prognosis [9-11]. Conversely, a systematic deficiency of 

Tregs is equally concerning. Without Tregs keeping the 

immune system in check, body’s own tissues become 

vulnerable to the autoreactive T cells of the body, 

potentially leading to a range of autoimmune diseases such 

as rheumatoid arthritis, and multiple sclerosis [12]. 

Given the global significance of cancer and the 

complex role of Tregs, it is crucial to understand how 

Tregs both maintain immune balance and potentially aid 

tumor growth [13]. Herein, we explore the mechanisms 

of Treg-mediated suppression in cancer and discuss the 

challenges and opportunities in targeting Tregs 

therapeutically. 

 

Methods 

This review is underpinned by a thorough examination 

of the recent literature, specifically focusing on the role of 

Tregs in the TME. Emphasis is given to both cell-contact 

dependent and independent mechanisms of Treg action in 

the TME. Furthermore, the review incorporates emerging 

evidence from clinical trial studies to highlight both the 

potential and challenges of therapeutically targeting Tregs. 

An extensive search of the PubMed database was 

conducted to collate peer-reviewed articles published in 

English from 2010 to the present. In addition to the 

systematic search, a manual search was conducted 

throughout the project, with no date restriction. Boolean 

expressions “AND” and “OR” were utilized to ensure a 

comprehensive yield of relevant studies (Appendix A). 

 

Results 

Cell-contact Independent Mechanism of Inhibition 

Cytokines/Chemokines 

Tregs, with their unique immunosuppressive qualities, 

have an indispensable function in immune homeostasis, 

primarily through the production of anti-inflammatory 

cytokines such as IL-10, TGF-beta, and IL-35 [14]. These 

cytokines contribute to the general immunosuppressive 

milieu favoring tumorigenesis in various ways. IL-10 is a 

potent anti-inflammatory cytokine produced by Tregs, 

which directly inhibits the production of pro-inflammatory 

cytokines and chemokines by macrophages and dendritic 

cells [15]. By doing so, it hinders the activation and 

expansion of effector T cells, including cytotoxic T 

lymphocytes (CTLs), which are key players in anti-tumor 

immunity. In the context of cancer, this IL-10 mediated 

immune suppression allows cancer cells to avoid immune 

recognition and destruction, thereby facilitating their 

growth and spread. 

TGF-beta is another pivotal cytokine released by 

Tregs. In the TME, TGF-beta, released by Tregs, inhibits 

effector T-cell proliferation, cytotoxic activity, and 

cytokine production [16]. Moreover, it stimulates the 

conversion of naïve T cells into induced Tregs, further 

augmenting the Treg pool in the TME. This bolsters the 

immunosuppressive environment, facilitating tumor cell 

proliferation and metastasis. 

IL-35 is a more recently discovered member of the 

interleukin 12 family, primarily produced by Tregs [17]. It 

has strong immunosuppressive properties, and its 

overexpression in cancer correlates with poor prognosis 

[18]. IL-35 can suppress the proliferation and function of 

effector T cells, inducing apoptosis, and can also promote 

the conversion of naïve T cells into Tregs [19]. In the 

context of the TME, IL-35, by tipping the balance towards 

immune suppression, allows tumor cells to escape immune 

surveillance. 

Beyond cytokine production, Tregs also impact the 

TME via manipulation of chemokines. Tregs have been 

shown to influence chemokine profiles to attract 

immunosuppressive cells, such as myeloid-derived 

suppressor cells (MDSCs) and more Tregs, while repelling 

effector immune cells [20-22]. For instance, Tregs can 

upregulate the production of CCL22, a chemokine that 

binds to CCR4 [23]. This creates a positive feedback loop, 

leading to the recruitment and accumulation of Tregs, 

promoting a denser Treg population. The resultant increase 

in Treg density in the TME promotes cancer progression by 

suppressing effector T cell function and enhancing immune 

evasion by the tumor cells [24]. 

Furthermore, Tregs can also modulate the chemokine 

profile to repel effector immune cells. They achieve this by 

downregulating the production of certain chemokines such 

as CXCL9 and CXCL10, which are involved in the 

recruitment of effector T cells and natural killer cells [24, 

25]. This manipulation of the chemokine profile hinders the 

infiltration of these effector immune cells into the TME, 

further allowing the tumor cells to escape immune 

surveillance. 

 

Metabolic Competition 

Tregs contribute to tumorigenesis not only through 

immunosuppressive action but also through metabolic 

competition. Unlike conventional T cells, Tregs 

demonstrate significant metabolic flexibility, which enables 

them to thrive in the lactic acid rich TME [26]. Tumor cells 

undergo aerobic glycolysis, known as the “Warburg effect,” 

to rapidly produce energy and essential metabolic 

intermediates needed for their swift proliferation. Aerobic 

glycolysis of tumor cells results in the accumulation of 

lactic acid in the TME which creates an acidic environment, 

impairing the functionality of anti-tumor immune cells and 

favouring tumor immune evasion [27-29]. 

This shift in metabolic landscape significantly impacts 

the function of T cells in the TME. Tregs, however, with 

their distinct metabolic profile, are well-equipped to survive 

these harsh conditions due to their ability to utilize lactic 

acid and continue to suppress the anti-tumor activity of 

effector T cells, thereby promoting tumorigenesis [30-32]. 

Here, the metabolic flexibility of Tregs becomes crucial. 

The study by Watson et al. has found that lactic acid acts as a 
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metabolic fuel for Tregs [33]. They observed that Tregs 

express high levels of the lactate transporter 

monocarboxylate transporter 1 (MCT1), allowing them to 

efficiently uptake lactic acid from the TME. This uptake of 

lactic acid by Tregs was found to be essential for their 

survival and function within the tumor. It was also revealed 

that lactic acid metabolism in Tregs promotes the production 

of ATP and supports the expression of key molecules 

involved in Treg suppressive function, such as forkhead box 

protein 3 (Foxp3) and CTLA-4. Interestingly, inhibition of 

lactate uptake or blocking lactate metabolism impaired Treg 

function and reduced their ability to suppress immune 

responses. This was demonstrated in mouse models, where 

blocking lactate uptake by Tregs enhanced anti-tumour 

immune responses and inhibited tumour growth [34]. 

Moreover, Tregs have been shown to rely on amino 

acid metabolism [35]. Amino acids such as glutamine and 

tryptophan are essential for T cell function and survival 

[36]. Tregs, by upregulating the expression of amino acid 

transporters such as L-type amino acid transporter 1, can 

deplete the TME of these essential nutrients, further 

impairing the metabolic fitness and anti-tumor function of 

effector T cells. Additionally, amino acid metabolism, 

particularly through the kynurenine pathway of tryptophan 

catabolism, can generate immunosuppressive metabolites 

that augment Treg suppressive function [37]. 

In addition, Tregs, express the interleukin-2 receptor α 

chain (CD25) at high levels, which enables them to 

sequester IL-2 within the TME [38]. IL-2 is a critical 

cytokine for T cell growth and survival, and its availability 

is crucial for the maintenance of conventional T cell 

populations. Tregs, by expressing high levels of CD25, can 

effectively compete for IL-2 binding and limit its 

availability for conventional T cells. This competition for 

IL-2 by Tregs diminishes the survival and proliferation 

signals that IL-2 provides to conventional T cells, thereby 

suppressing their activity within the TME. Together, these 

metabolic adaptations permit Tregs to outcompete other 

immune cells within the TME, contributing to the 

immunosuppressive environment and tumorigenesis. 

Altogether, Tregs employ various metabolic strategies 

to enhance their survival and immunosuppressive function 

and impede effector T cell function. This metabolic 

competition, therefore, constitutes a significant mechanism 

through which Tregs contribute to tumorigenesis. 

Understanding these metabolic interplays in the TME offers 

opportunities for novel therapeutic interventions targeting 

the metabolic dependencies of Tregs. 

 

Cell-Contact Dependent Mechanism of Inhibition – 

Immune Checkpoint Molecules 

Tregs express several immune checkpoint molecules 

such as CTLA-4 and programmed death protein-1 (PD-1) 

[39]. These proteins interact with their ligands on effector 

cells, leading to inhibitory signals that suppress their 

activity. In the context of cancer, these interactions result in 

T-cell exhaustion and the eventual evasion of immune 

response by the tumor cells. 

CTLA-4 and PD-1 are critical for maintaining self-

tolerance and preventing autoimmunity by suppressing 

overactive immune responses [40]. Tregs highly express 

these immune checkpoint molecules, allowing them to 

impart a cell-contact dependent inhibition on effector T 

cells. 

CTLA-4 competes with the co-stimulatory molecule 

CD28 on effector T cells for binding to CD80 and CD86 on 

antigen-presenting cells. CTLA-4 has a higher affinity for 

these ligands than CD28, allowing it to outcompete CD28 

on conventional T cells and inhibit the co-stimulatory 

signal necessary for T cell activation. In doing so, Tregs 

using CTLA-4 can suppress the activation, proliferation, 

and effector functions of T cells, thereby promoting 

immune evasion by tumor cells [41-44]. 

Interaction of PD-1 with its ligands, programmed cell 

death ligand 1 (PD-L1) and programmed cell death ligand 2 

(PD-L2), provides an inhibitory signal that reduces T cell 

activation and proliferation. In the context of cancer, tumor 

cells often overexpress PD-L1, and the interaction of PD-1 

on Tregs with PD-L1 on tumor cells results in enhanced 

Treg function and survival. Moreover, it contributes to the 

exhaustion of effector T cells, a state of dysfunction 

characterized by poor effector function, sustained 

expression of inhibitory receptors, and a transcriptional 

state distinct from that of functional effector or memory T 

cells [45]. 

The upregulation of these checkpoint molecules in the 

TME is a strategy used by Tregs to maintain an 

immunosuppressive environment that supports tumor 

survival and growth. Consequently, these molecules serve 

as potential targets for cancer immunotherapy, with the goal 

of releasing the 'brakes' on the immune system to boost 

anti-tumor responses. This has led to the development of 

immune checkpoint inhibitors, such as anti-CTLA-4, anti-

PD-1 and anti-PDL1 therapies, which have shown 

considerable success in treating various types of cancer. 

Understanding the nuanced role of these molecules in Treg-

mediated immune suppression is therefore of great 

importance for the development of effective cancer 

immunotherapies. 

 

Challenges of Targeting Tregs 

Treg depletion has shown promise in preclinical 

models, but the translation to clinical settings is fraught 

with challenges [46]. A significant obstacle lies in 

distinguishing Tregs from beneficial immune cells to avoid 

off-target effects, as many surface markers are shared 

between them [47]. In addition, systemic depletion of Tregs 

can result in autoimmune conditions due to their role in 

maintaining immune homeostasis [48]. Recent clinical trials 

have observed some adverse effects, including exacerbated 

autoimmunity and inflammation, underlining the need for 

careful balancing [49]. 
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While Tregs are an attractive target for 

immunotherapy due to their role in suppressing anti-tumor 

immunity, strategies aimed at depleting or inhibiting 

Tregs present significant challenges. The primary 

challenge in targeting Tregs therapeutically lies in their 

similarity to other beneficial immune cells. Tregs share 

many surface markers with effector T cells and other 

immune cell subsets. For instance, in a study conducted 

by Wegrzyn et al. the researchers presented a report of the 

surface markers expressed on Tregs and conventional T 

cells. Out of the 371 surface markers, Tregs and 

conventional T cells expressed 118 markers in common, 

with only five antigens expressed exclusively by Tregs 

and 38 exclusively expressed by conventional T cells. 

Moreover, CD25 and CTLA-4, two commonly used 

targets for Treg depletion, are also expressed on activated 

effector T cells [50]. This overlap in marker expression 

complicates the selective targeting of Tregs without 

impacting other immune cells necessary for a robust anti-

tumor response. 

Furthermore, Tregs play an essential role in 

maintaining immune homeostasis and preventing 

autoimmunity [51-57]. Based on a recent comprehensive 

review looking into the immune-related adverse events 

(IRAEs) of the cancer immunotherapies anti-PD1 and anti-

CTLA4, close to 90% of patients with anti-CTLA4 and 

close to 70% of patients on anti-PD1/PD-L1 therapy 

suffered with IRAEs [58-60]. Majority of the IRAEs occur 

in 3-6 months from the start of anti-CTLA4, anti-

PD1/PDL1 therapy [58, 61, 62]. The spectrum of IRAEs 

caused by the mentioned cancer immunotherapies range 

from vitiligo, dry mouth, diarrhoea, colitis, thyroid 

dysfunction, lung disorders, renal disorders and many more 

[59, 61, 63-72]. 

These challenges underscore the need for a careful 

balancing act in Treg-targeting strategies. Therapies must 

effectively mitigate Treg-mediated immune suppression to 

enhance anti-tumor responses, while avoiding the induction 

of harmful autoimmune responses. This delicate balance is 

a primary focus of ongoing research in the field of cancer 

immunotherapy. 

 

Approaches to Targeting Tregs 

In light of the challenges associated with Treg-

targeting strategies, researchers are exploring multiple 

approaches to harness anti-tumor immunity while 

minimizing off-target effects and autoimmunity safely and 

effectively. 

 

Depletion of Tregs 

Chemotherapy: Certain chemotherapy drugs like 

cyclophosphamide and paclitaxel can deplete Treg cells by 

promoting dendritic cell maturation and targeting 

proliferating cells more common in the Treg population 

than non-Treg cells [73-77]. These drugs are administered 

in low metronomic doses to selectively deplete Tregs. The 

downside of this approach is a low therapeutic index due to 

toxicity to effector T cells. 

CD25 antibody and denileukin diftitox: Treg role in 

tumor immunity was initially studied via depletion of 

CD25+ T cells. Anti-CD25 antibodies can suppress tumor 

growth, but since CD25 is also expressed by activated 

effector T cells, this complicates the targeting strategy [78]. 

Daclizumab, an anti-CD25 monoclonal antibody, has been 

used to deplete Treg with varied results [79, 80]. 

Denileukin diftitox was developed to target T cells with 

high CD25 expression, showing some efficacy in renal cell 

carcinoma and melanoma patients [81]. However, its 

effectiveness is limited in the presence of 

CD25lowFoxp3+T cells [80]. 

 

Inhibition of Tregs 

Anti-OX40: OX40 also known as CD134, a member of 

the TNFR family is predominantly expressed on activated T 

cells. Anti-OX40 antibodies, particularly agonistic forms, 

bind to OX40 on Tregs. This binding can interfere with the 

suppressive function of Tregs, as a result, diminished 

suppression of effector T cells by Tregs, leading to 

increased immune responses that will be beneficial during 

cancer immunotherapy [82-84]. In 2022, the first-ever 

human study involving the investigational drug 

INCAGN01949, an anti-OX40 monoclonal antibody, was 

conducted in patients with advanced or metastatic solid 

tumors, yielding important insights into its safety and 

preliminary efficacy [85]. The study revealed that 

INCAGN01949 monotherapy demonstrated good safety in 

advanced solid tumor patients, but its effectiveness in terms 

of tumor response and T-cell-related effects was limited, 

emphasizing the necessity for further research with 

combination therapies. 

Anti-Glucocorticoid-Induced TNFR-Related Protein 

(GITR): The GITR protein is a receptor that is highly 

expressed on Tregs. When GITR is activated, it has been 

found to reduce the suppressive functions of Tregs, leading 

to an overall increase in immune response [86-88]. The 

binding of anti-GITR antibody to the GITR receptor on 

Tregs and effector T cells leads to inhibition of the 

immunosuppressive properties of Tregs and enhancing the 

proliferation and activation of effector T cells. In 2021, the 

first-ever human study involving GWN323, an anti-GITR 

monoclonal antibody was conducted in patients with 

advanced/metastatic solid tumors [89]. The anti-GITR 

therapy was generally safe for the patients, but showed 

limited effectiveness alone, with modest improvement 

when combined with spartalizumab (another monoclonal 

antibody). 

Beyond the previously stated mechanisms, many other 

Treg-targeting strategies have emerged. In particular, 

mechanisms like Toll-like receptors (TLR) ligands, 

adenosine inhibitors, and peptide inhibitors of Foxp3 have 

been identified to potentially inhibit Treg-mediated 

tolerance and improve cancer vaccine efficacy [90-97]. 
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Another approach involves disrupting Treg homing by 

targeting chemokine receptor molecules, though this carries 

risks related to effector T cell trafficking [22, 23, 98-104]. 

Additionally, anti-angiogenic molecules, such as sunitinib, 

have shown potential in reducing Treg number [105-110]. 

 

Discussion 

Tregs play a significant role in the complex interplay 

of tumorigenesis by establishing and maintaining an 

immunosuppressive TME, which allows tumor cells to 

evade immune destruction. In this literature review, we 

have explored various mechanisms through which Tregs 

contribute to cancer progression, including the secretion of 

immunosuppressive cytokines, manipulation of the 

chemokine milieu, metabolic competition, and the 

expression of immune checkpoint molecules and how they 

can be targeted therapeutically. However, targeting Tregs is 

tricky; they shared markers with essential immune cells and 

help maintain immune balance. Striking the right balance to 

combat tumors without harming immunity is delicate. 

Current strategies being researched include selectively 

inhibiting Treg functions in tumor environments, using 

immune checkpoint inhibitors, and converting Tregs into 

effector T cells. These approaches show promise but need 

careful handling to prevent side effects. 

 

Conclusions 

This review highlights areas for potential therapeutic 

intervention and points to the need for a better 

understanding of Treg biology. Investigations into Treg 

metabolic adaptability, their modulation of chemokines 

and cytokines, and potential plasticity are promising 

future directions. Further, refining Treg-targeting 

strategies by better differentiating Tregs from other 

immune cells could improve treatments and reduce off-

target effects. In conclusion, the potential of Treg 

targeting in cancer immunotherapy is significant, 

promising to pave the way for innovative strategies that 

could revolutionize cancer treatment. Understanding Treg 

biology and function in more depth is critical to 

unlocking this potential and improving patient outcomes 

in the fight against cancer. 
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