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Abstract  

Introduction: As a result of climate change, increased drought incidence significantly affects the crop yield of rice, Oryza 

sativa. Given that rice serves as a staple food, adaptation strategies to combat climate change-induced drought are critical. 

Water retention is regulated by stomata size, stomata density, and the opening and closing of the stomata central pore. 

Previous studies have identified relevant developmental genes in the Arabidopsis thaliana model system, encoding for 

epidermal patterning factor (EPFs) and EPF-like (EPFL) signaling peptides, and their orthologs across various plant species. 

In barley (Hordeum vulgare), genetic manipulation of EPF1 has been shown to reduce stomatal density, resulting in 

improved drought tolerance. In rice, overexpression of OsEPF1 yields a similar phenotype. The purpose of our study is to 

develop a proposal for a method to increase drought tolerance of Oryza sativa in an effort to battle climate change. 

Methods: It has been shown that CRISPR-mediated editing successfully generated knockouts (KOs) of EPFL9—a positive 

regulator of stomatal development—in Oryza sativa. As such, we propose to downregulate EPFL9 via CRISPR-Cpfb1 gene 

editing in Oryza sativa. Our proposal includes the growth of genetically altered and control Oryza sativa under specific 

conditions, including drought conditions, in order to simulate a natural environment. Following the growth of the plants, we 

propose conducting tests to determine yield and growth in order to assess drought tolerance.  

Discussion: We expect to observe reduced stomatal densities and better drought tolerance in the mutant Oryza sativa 

samples. This should be observed in increased yield and growth from genetically altered samples. Potential implications of 

our proposal could include improvements in proto-plants developed in the agricultural sector, as well as providing a 

foundation for future studies to be conducted on drought tolerance. 

Conclusion: Our proposal uniquely addresses the impact of climate change on rice by potentially providing an opportunity to 

scale-up, generating a drought-tolerant rice plant for comparison with previous prototypes, and secondarily, the elucidation of 

stomatal development. Our proposal may open further opportunities to address and alter plant resistance to climate change. 
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Introduction 

Climate change poses a significant challenge to global 

food security. With rising temperatures, growing water 

scarcity, higher ozone levels, and an increase in extreme 

weather events, among many other changes, important 

crops to the world’s food systems are at risk of suffering 

lower yields and decreased nutritional value [1]. In fact, 

crop yield reduction is estimated to increase to 90% by 

2100 for major crops [2,3].  

As a staple food, rice (Oryza sativa) is of pertinent 

interest. Indeed, rice is consumed by more than 3.5 billion 

people, accounting for 20% of an individual’s daily caloric 

intake [4]. Rice is particularly sensitive to drought, 

especially in arable land where water is limited [5,6]. Rice 

grows in warm, tropical climates and requires a large 

amount of water. As a significant percentage of global rice 

is rainfed, rice is vulnerable to extreme rainfall changes 

caused by climate change [7]. 

Given that increased drought incidence critically 

impacts the crop yield of rice, altering rice plants for 

drought resistance and/or tolerance serves as a potential 

adaptation strategy. One method is by improving rice’s 
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ability to retain water through modifying characteristics of 

its stomata. The stomata consist of two guard cells that 

surround and control a pore in the leaf, functioning to 

regulate gas exchange as part of photosynthesis [8]. 

Importantly, when stomata pores are open, water is lost 

through transpiration. While transpiration has beneficial 

effects such as evaporative cooling, it can prove damaging 

during periods of water stress. As such, manipulating 

stomata size, stomata density, and the opening and closing 

of the central pore may serve as avenues of water loss 

control in drought conditions [8]. That being said, it should 

be noted that these effects must be moderated to ensure 

photosynthesis is not significantly impacted [9].  

While stomatal development in rice has yet to be fully 

explicated, previous studies have identified relevant 

developmental genes in the Arabidopsis thaliana model 

system, encoding for epidermal patterning factor (EPFs) 

and EPF-like (EPFL) signaling peptides, and their orthologs 

across various plant species [10,11,12,13]. Specifically, it 

has been demonstrated in Hordeum vulgare, commonly 

known as barley, that genetic manipulation of Hordeum 

vulgare EPF1 (HvEPF1) has been shown to reduce 

stomatal density, successfully improving drought tolerance 

without impacting crop yield [14]. Seeing that stomatal 

development relatively parallels the stomatal development 

of related plant species, manipulating EPF orthologs in rice 

may yield similar phenotypes [14].  

Similar to the study using HvEPF1, Caine et al. have 

demonstrated that overexpression of rice epidermal 

patterning factor OsEPF1 also results in reduced stomatal 

density and improved drought tolerance [15]. EPF1 is a 

negative regulator of stomatal development such that its 

overexpression arrests stomatal development. On the other 

hand, EPFL9 is a positive regulator of stomatal development 

[16,17,18]. Yin et al,. have established a method involving 

Cpfb1 to create CRISPR-mediated knockouts (KOs) of 

EPFL9 in Oryza sativa [16]. Analogous to the CRISPR-

Cas9 system, Cpfb1 is a single RNA-guided DNA 

endonuclease that recognizes a T-rich motif 5’ distal to the 

target gene site, making a staggered double-ended DNA 

break [16]. Accordingly, we propose to downregulate 

EPFL9 via CRISPR-Cpfb1 gene editing in Oryza sativa: we 

expect to observe reduced stomatal densities and better 

drought tolerance in the mutant Oryza sativa samples.  

In light of Caine et al.’s research with OsEPF1, our 

proposal has several motivations. First, the identification of 

another modifiable gene candidate, EPFL9, for conferring 

drought tolerance would help facilitate commercial-scale 

gene editing given that it can be more efficiently 

accomplished with multiple gene targets. Therefore, our 

proposal holds long-term potential for future 

implementation on a larger scale. Second, the creation of 

more than one genetically manipulated plant, henceforth 

referred to as a proto-plant, will accommodate for varying 

environmental conditions wherein drought intensities and 

incidences vary. For example, an EPF1-edited drought-

tolerant proto-plant may thrive better in harsh drought 

conditions whereas an EPFL9-edited drought-tolerant 

proto-plant may thrive better in mild drought conditions. 

Lastly, our proposal will contribute to the elucidation of 

stomatal development as our results assess the impact of 

stomata regulator EPFL9 on the relationship of the stoma 

density under drought conditions; this further clarifies the 

role of EPFL9 in the context of Oryza sativa. 

 

Methods 

In this study, a commercially widespread variety of rice, 

IR64, will be used. The seedlings will be germinated and 

cultivated under specific conditions as described by Caine et 

al [15]. These conditions include cultivation of seeds in a 

Sanyo growth cabinet for 7 days with an alternating light and 

dark photosynthetically active radiation cycle [15]. As seen 

in Figure 1, there will be three treatment EPFL9 groups: 

control plants with the wildtype genotype, heterozygous 

plants, and homozygous KO mutant plants. Each group will 

be grown in three sets of conditions: normal, mild drought, 

and severe drought. Severity of drought condition will be 

qualified by the frequency of watering: normal conditions 

will be watered well throughout the course of the experiment 

whereas mild drought conditions will include one drought  

for about a week, and severe drought conditions will include 

two droughts lasting about a week each [15].The plants will 

then be harvested after 120 days with fertilization every  

2 weeks.  

In order to create EPFL9 mutants, we will be using a 

CRISPR-Cpfb1 system. Previous research has shown that 

Cpfb1 can produce stable mutants in plant cell lines [19]. 

We will transform a known plasmid (pCambia-LbCpf1-

EPFL9) into commercial rice strain embryos (IR64) using 

the method described by Yin et al [16]. Following this, a 

Surveyor Assay (i.e. PCR-testing our sample using EPFL9 

primers) will be performed. Samples found to be positive 

for the Cpfb1 transgene will undergo Sanger sequencing for 

their zygosity. Comparing with wildtype IR64 reference 

data, double peaks on the sequencing chromatogram with 

alternative sequence: wildtype sequence over 0.8:1 will be 

considered heterozygous [19]. Following this, the stomata 

and guardal cell density, water retention, and the overall 

yield of each group will be examined; this will help 

determine how EPFL9 gene dosage and stomatal 

development is related to rice growth.  

Yield and water retention, along with stomatal density, 

will be determined to assess the results of the experiment. 

In order to assess yield, plant tissue will be dried at room 

temperature (~20°C) for one month, after which biomass 

can be accurately measured. This approach will standardize 

the yield calculation for each experimental group, enabling 

analysis of differences between treatment groups and the 

control group. Stomatal density of the lower surface of the 

leaf will be regularly recorded. To determine water 

retention, plants will be grown in an individual pot filled 

with 1 liter of water, and the pot will be weighed at the end 
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of each day at 7:00PM EST for one month. A control pot 

will also be weighed; to provide the overall water loss, the 

weight of the control group pot will be subtracted from the 

weight of the experimental group pots. These results will 

also allow the assessment of the viability of experiments, 

furthering the validity of the study. 

 

 
Figure 1. The three conditions under which the crop will be grown, followed by the CRISPR-Cfb1 system (Biorender.com). 

 

 
Figure 2. The three experimental groups, followed by measures to determine results (Biorender.com). 
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Anticipated Results 

The study timeline would vary dependent on plant 

growth and harvesting times. It is estimated that genetic 

editing will require sufficient time, seedlings will be 

germinated for 7-8 days, and plants will be ready to be 

harvested after approximately 120 days [15]. Following 

this, another 1 month is approximated for biomass 

determination and water retention calculations. As such, the 

study timeline is estimated to be 4-6 months, dependent on 

growth and experimental errors. It is anticipated that there 

will be reduced stomatal density and better drought 

tolerance seen in the mutant samples, as compared to 

controls.  

 

Discussion 

We anticipate improved rice growth under drought 

conditions in the transgenetic rice strain as compared to that 

of the wildtype rice strain. In terms of plant tissue yield, 

greater yield is expected in the treatment EPFL9 groups as 

compared to the control groups under drought conditions 

due to expected greater resistance to drought conditions. 

Within the non-drought condition group, it is expected to 

see similar yield results regardless of the differing zygosity 

due to a sufficient amount of water provided uniformly to 

the group. Furthermore, as a result of improved water 

conservation, lower stomatal density is expected in the 

EPFL9 treatment groups; this finding would be consistent 

with past literature including that of Caine et al. [15] 

Additionally, as a result of increased drought tolerance and 

consequent decreases in water loss, the EPFL9 treatment 

groups would be expected to exhibit greater water retention 

as compared to controls. 

We aim to address both the impact of climate change 

on rice as well as consider the scale-up potential of the 

project via the genetic engineered creation of a drought-

tolerant proto-plant. As such, our study serves as an 

important addition to previous literature focused on 

translational and scalable modifications for better rice yield. 

Potential applications of our study include long-term 

implementation of the proto-plant within the agriculture 

sector in order to combat worsening climate change. 

Additionally, our genetic model may serve as a 

foundational proof-of-principle model for the modification 

of similar forms of rice and other crops. Potential 

limitations include accurate control of drought conditions 

within the laboratory such that they recapitulate natural 

conditions under typical rice farming conditions.  

 

Conclusions 

Overall, the aim of this study is to develop a method to 

improve the drought tolerance of rice by increasing its 

water retention via reduced stomatal density. EPFL9 holds 

promise as a positive regulator of stomatal development. 

Future research is required to determine the safety and 

nutritional value of ingesting an EPFL9 knockout plant in 

humans, as it may cause off-target effects in other 

biochemical pathways, leading to potential biotoxicity. 

Nevertheless, our proposed adaptation strategy may open 

further avenues in methods to induce plant resistance to 

climate change. 
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