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Abstract 

Introduction: Small molecule cancer drugs target rapidly growing cancerous and healthy cells, leading to negative side effects. 

Due to the broad effects of small molecule drugs (SMDs), particularly on healthy cells, researchers have established methods 

such as altering lipophilicity, introducing drug conjugates, and nano-based drug delivery methods to diminish side effects. 

Methods: Relevant biomedical literature between 1991 to 2021 was obtained using Medline PubMed. Search terms were 

“physicochemical properties”, “nanotubes”, “liposomes”, and “small molecule drug conjugates”. Literature was selected based 

on pertinency after assessing the abstracts. 

Results: Properties such as a drug’s lipophilicity influence most SMD’s promiscuity. Controlling the hydrophobic features of 

lipophilic drugs within optimal ranges increases their specificity, half-life, and aqueous solubility. However, the narrow optimal 

range of lipophilicity makes it challenging to observe noticeable effects without reducing therapeutic effects. SMD conjugates 

improve drug delivery using a targeting ligand, and a therapeutic payload. The targeting ligand ensures greater binding to 

receptors on target tissues, such that a lower dose of a drug is required, thereby decreasing toxicity. SMD conjugates are non-

immunogenic and have lower molecular weights, allowing for greater entry into solid tumours. Several nanomedical 

approaches have been developed to improve drug delivery. Carbon nanotubes, which exploit the enhanced permeability and 

retention effect, increase the accumulation of the drug at the cancerous tissue. Another method involves the use of liposomes, 

which exhibit high biocompatibility with cell membranes, low toxicity, and capability to carry hydrophobic as well as 

hydrophilic molecules. 

Discussion: While said novel therapies show increased targeting effects and decreased toxicity, notable limitations exist. Some 

SMD chemotherapeutics with high lipophilicity has been linked to adverse side effects. Conversely, lower lipophilicity ranges 

may reduce the permeability and potency of the drug. Alternatively, select SMD conjugates display poorer bioavailability, 

quick clearance, and multidrug resistance. Moreover, the toxicity of carbon nanotubes is not entirely deduced which may be 

associated with negative side effects. 

Conclusion: This systematic review emphasizes the importance of novel drug delivery systems to mitigate the toxic effects of 

small molecule cancer drugs through changes in lipophilicity, the introduction of drug conjugates, and nano-based drug delivery 

methods. 
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Introduction 

Currently, cancer is the second most prevalent disease 

in all of North America [1]. This group of diseases is 

characterized by rapid and uncontrollable cell growth and 

resistance to death [2]. At present, the primary treatment of 

metastatic cancers involves the administration of anti-cancer 

drugs such as chemotherapy, hormone-based, and biologics 

therapy [1]. One of the most traditional cancer treatments is 

small molecule drugs, which are generally defined as 

synthetic compounds with a molecular weight below 1-1.5 

kDa [3,4]. Due to their size and simple chemical structures, 

these compounds have more predictable pharmacokinetics 

and pharmacodynamics when compared to treatments like 

biologics [4]. However, SMDs are associated with a range of 

off-target effects which decrease efficacy and are associated 

with numerous side effects [5]. One approach to increase the 

efficacy of these drugs is to increase their delivery to target 

sites. The most notable progress in the development of 
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SMDs and targeted drug delivery involves the modifications 

to drug lipophilicity, small molecule drug conjugates 

(SMDCs), and nanomedicine. 

Lipophilicity, which is defined as the compound’s 

affinity for nonpolar environments, has been shown to 

greatly influence the target specificity and selectivity of 

SMDs [5]. Lipophilicity contributes, among other things, to 

a drug’s absorption, distribution, metabolism, excretion, and 

toxicity (ADMET) profile [5,6]. This is important as the 

ADMET profile deals with pharmacokinetics of a proposed 

drug candidate and ultimately helps scientists evaluate its 

efficacy and safety [7].  

Furthermore, research in precision medicine has led to 

the development of SMDCs, an alternative and more modern 

approach to antibody drug conjugates (ADCs) [8-10]. 

SMDCs are composed of a targeting ligand, a linker, and a 

therapeutic payload [11]. The targeting ligand works to bind 

to specific elements of target tissues, often with very high 

affinities, allowing for the therapeutic payload to be 

delivered directly to the tumour [12-15]. The low molecular 

weight of SMDCs allows for greater penetration into 

cancerous tissue to yield greater therapeutic effects and 

mitigate the negative effects of cancer chemotherapeutics 

due to the nature of the specific delivery [16,17].  

Since their development in 1991, carbon nanotubes have 

increasingly gained research interest as small-molecule drug 

carriers. Several properties have distinguished carbon 

nanotubes from other small-molecule drug carriers. Carbon 

nanotubes appear in two forms which cater to different 

applications. Carbon nanotubes can either be single walled, 

consisting of a single cylindrical graphene sheet, or be multi-

walled tubes, consisting of several cylindrical graphene 

sheets [18]. Their high surface areas make them perfect 

candidates for targeted drug carriers [19]. The highly 

efficient translocation mechanisms of carbon nanotubes 

across the plasma membrane equip them with the advantage 

of overcoming the low permeability of the plasma membrane 

to many drugs [19,20].  

This work presents a brief literature review on the 

various techniques by which drug delivery systems have 

been altered to increase the efficacy of small-molecule drugs 

for cancer treatment, including altering lipophilicity, 

introducing drug conjugates, and utilizing nano-based drug 

delivery methods to diminish side effects of 

chemotherapeutic agents. 

 

Methods 

Search Strategy 

Relevant publications published between 1991 to 2021 

were obtained through a computerized search through 

MEDLINE PubMed. Search terms included “small molecule 

drugs” followed by “lipophilicity” OR “physicochemical 

properties,” OR “nanotubes,” OR “liposomes,” OR 

“conjugates”. In doing so, 4551 results were obtained, 

however using the selection criteria, 3367 results were 

excluded. Literature was selected based on relevance 

following abstract screening. 

 

Selection Criteria 

The selection criteria for the included articles were as 

follows: 

• The full report was published in English. 

• Only full reports were selected. Letters, abstracts, 

books, conference proceedings and posters were 

excluded. 

• Both primary and review articles were selected. 

 

Results 

General Overview of Lipophilicity 

Many new drug candidates have poor water solubility, 

selectivity, and bioavailability. In fact, it is often one of the 

main barriers preventing drugs from reaching the market 

[21].  There are a variety of techniques employed by 

scientists to circumvent this issue, one of which is altering 

the characteristics of a drug’s physicochemical profile, such 

as its lipophilicity. There is strong evidence to suggest that 

controlling for a drug’s lipophilicity can improve its 

selectivity and potency [5]. Moreover, this physicochemical 

parameter is of particular importance, especially in the early 

stages of drug design. Lipophilicity contributes to the 

ADMET profile of a drug, thus selecting drug candidates 

with favorable ADMET profiles can increase the likelihood 

of therapeutic success [5]. 

 

Measuring Lipophilicity 

Typically, lipophilicity is measured by its partition 

coefficient (logP) or distribution coefficient (logD), that is its 

disbursement between two immiscible solvents. There is an 

optimum region of lipophilicity [21-23]. A drug with high 

lipophilicity exhibits poor solubility and absorption, whereas 

drugs with low lipophilicity exhibit poor potency and 

selectivity [24]. It is believed that the optimal region of 

lipophilicity is between the narrow range of 1-3 for logD and 

0-3 for logP [5]. Alternatively, lipophilicity predictive 

models, such as the shake flask method, can be used in lieu 

of experimental determination [21,22]. 

 

Strategies Used to Improve Lipophilicity 

There exists a strong correlation between a drug’s 

lipophilicity and promiscuity, which is why the development 

of lipophilic compounds for cancer treatment has been 

widely studied over the past several decades. The use of 

lipophilic pro-drugs is an example of this strategy. A pro-

drug is a small targeting moiety added to a drug of interest, 

which allows it to be selectively activated in a given 

environment [25]. The pro-drugs undergo a process called 

biotransformation mainly in the liver, where they are 

transformed, by chemical or enzymatic cleavage, whereby 

the active form is released [25]. Pro-drugs are typically used 

to improve target specificity and selectivity [25]. Over the 

years, many lipophilic pro-drugs have been developed to 
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treat different types of cancers more effectively. An example 

of this includes chemotherapeutic drugs developed by 

Mattarei et al (2018) [26]. This group of researchers were 

attempting to target cancer cells by exploiting one of its 

intrinsic features: an elevated level of reactive oxygen 

species (ROS). The researchers were attempting to stress the 

cancer cells to death by inhibiting mtKv.13, a mitochondrial 

potassium channel, which has been shown to contribute to 

apoptosis in various cancer cell lines [26]. To do so, they 

combined triphenylphosphonium (TPP), a lipophilic pro-

drug, to several PAP-1 (5-[4-phenoxybutoxy] psoralen) 

derivatives [26]. The drug becomes active after its carbamate 

group is hydrolyzed in a physiological environment [26]. 

The synthesized drugs in question were permeable to the 

mitochondrial membrane in both in vitro and in vivo cell 

models [26]. Moreover, they induced a cytotoxic effect in 

cancer cells, whilst leaving no significant impact on healthy 

human and mouse cells [26]. 

Liposomal drug delivery systems are another method 

employed by scientists to improve the lipophilicity. 

Liposomes themselves consist of an amphipathic bilayer 

lipid membrane [27]. Scientists encapsulate the 

hydrophilic/hydrophobic drugs into the liposomes, and the 

liposomes themselves facilitate the entry into the target cells 

by fusing with their membranes [27].  An example of this 

includes curcumin nanoliposomes. Curcumin is a natural 

anti-inflammatory compound, but by itself, curcumin has 

low water solubility and low bioavailability [28]. To 

circumvent this issue, Chen et al. (2015) employed the use 

of nanoliposomes, which are nanoscale bilayer lipid 

membranes [28]. The drug derivatives’ stability, cellular 

antioxidant activities and cellular uptake capacity were 

evaluated against different ionic conditions [28]. The 

stability of the encapsulated curcumin improved and 

exhibited similar cellular antioxidant activity compared to its 

free form. In sum, lipophilic carriers such as liposomes and 

nanoliposomes have proven themselves to be effective 

agents to assist in the cellular and tissue uptake of a given 

drug. 

 

General Overview of SMDCs 

Traditional chemotherapeutic drugs often lack tumour 

specificity which contributes to toxicity in normal cells [1]. 

As such, novel cancer drug discovery has heavily 

emphasized the importance of selective agents with high 

tumour specificity to mitigate these negative effects [29]. 

Specifically, many research groups are focused on 

developing therapeutic drugs tethered via a releasable linker 

to a targeting ligand, allowing the drug to accumulate and act 

solely in the tumour [29]. Since 2000, ADCs have dominated 

the pharmaceutical industry as a new class of highly potent 

drugs [30]. This is largely attributed to their specificity due 

to the presence of a monoclonal antibody that effectively 

targets tumor cell-surface proteins [30]. Despite their praise, 

said drugs still have several side effects as many of the 

targeted tumor cell-surface proteins are also expressed in 

normal cells [31]. Since then, SMDCs have emerged as a 

new, less established class of drugs to improve targeted 

delivery in cancer cells [32]. Much like ADCs, a typical 

SMDC contains a targeting ligand, a spacer, a cleavable 

bridge, and a therapeutic payload [32]. However, SMDCs 

utilize small molecule targeting in place of an antibody’s Fab 

region. This site-specific technology is non-immunogenic, 

and lower in molecular weight when compared to ADCs 

[33]. These characteristics allow for greater tumor 

penetration [33]. Due to the novelty of such drugs, recent 

studies have concentrated their efforts on altering these 

targeted conjugates to improve pharmacodynamic and 

pharmacokinetic parameters and increase the variability of 

the targeting ligand [32]. 

 

Targeting Ligand Selection and Design 

The targeting ligand of an SMDC is the equivalent of 

the antibody in an ADC [30]. This ensures that cytotoxic 

agents, such as chemotherapeutic drugs, can be selectively 

released in the tumor [32]. Firstly, when selecting a target 

receptor, it must be overexpressed on the tumor tissue when 

compared to normal cells and it must be present in sufficient 

quantities to be able to deliver appropriate amounts of drug 

through receptor-mediated endocytosis [29]. Thus, when 

examining SMDC design, the binding affinity, the target 

specificity, and the size of the molecule must be heavily 

considered to ensure this high efficacy [32]. By maintaining 

a high binding affinity and target specificity, the therapeutic 

payload can be decreased without sacrificing high drug 

efficacy in the tumour [32,33]. Therefore, SMDC drug 

design is focused on ensuring that such characteristics are 

maintained to decrease the concentration of cytotoxic drugs 

required for therapeutic effects.  

 

Folate-Targeted Small Molecule Drug Conjugates 

Currently, targeting ligands similar in structure to 

molecules, proteins, or ligands involved in cancer-related 

pathways are rapidly emerging [32,33]. These SMDCs, such 

as the use of folic acid as a ligand, selectively bind to 

receptors in said pathways and thereby inhibit tumor growth 

[32]. Notable research has been done on the use of folic acid 

as a targeting ligand for the folate receptor [29]. Under 

normal conditions, folic acid is crucial for the proliferation 

of cells; however, cancer cells have a high degree of folate 

receptor expression [29,32,33]. Therefore, when such 

SMDCs bind to the folate receptors (FRα, FRβ and FRγ), a 

glycosyl phosphatidylinositol-anchored glycoprotein on the 

cell surface endocytoses the folate-conjugated compound 

into the tumour cell [29,30]. One example is Vintafolide, 

composed of a folic acid targeting ligand, disulfide linker, 

and the drug DAVLBH [33-35]. The folic acid binds to the 

folate receptors on the tumour cells, and enters the cell by 

endocytosis [29,35]. The SMDC is then sequestered in an 

endosome with low pH [35]. The acidic environment causes 

the release of the SMDC from the folate receptors, while the 

reductive capacity in the endosome cleaves the linker and 
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releases the active drug [35]. The drug then leaves the 

endosome and enters the tumour cell, while the folate 

receptor is recycled [35]. 

Using the Vintafolide example, it becomes evident that 

SMDCs share similar characteristics to prodrugs [29, 35]. 

Namely, the design of a releasable linker that responds to the 

acidic environment of the endosome ensures that cytotoxic 

drugs are only released in the tumour. This further allows for 

greater potency and cytotoxic effects within the tumour 

without the negative side effects of traditional 

chemotherapeutic agents [35].  

Despite success in clinical trials, studies reveal major 

side effects such as constipation, due to unwarranted actions 

in of vintafolide in the liver [33-35]. Namely, the drug 

transferred into the bile duct and inhibited the gut’s 

peristaltic actions [29]. However, changes to the spacer of 

the SMDC, specifically modifying the oligopeptide spacer 

into a peptidoglycan spacer, resulted in significantly less 

clearance in the bile duct, while still maintaining drug 

potency [29].  

 

Overview of Carbon Nanotubes and Their Applications 

Like other targeted drug delivery methods, carbon 

nanotubes provide the advantage of cell-specific drug 

delivery, thereby reducing the toxicity of drugs to healthy 

tissue [36]. However, carbon nanotubes also possess some 

distinguishing qualities. Carbon nanotubes exhibit ultrahigh 

surface areas, high cellular internalization, incredibly stable 

and stiff structures, and high biocompatibility [37]. In 

addition, carbon nanotubes are subjected to the enhanced 

permeability and retention effect, which allows for high 

permeability across cell membranes and a lower clearance 

rate by the lymphatic system, resulting in accumulation at 

target sites for longer durations [37]. These qualities, 

amongst others, allow carbon nanotubes to present 

themselves as excellent candidates for applications in cancer 

therapy. 

 

Types of Carbon Nanotubes 

Single- and multi-walled nanotubes have been gaining 

research interest as nanotechnology methods for delivering 

chemotherapeutic agents to tumors. Carbon nanotubes owe 

their stable and biocompatible structures to the versatile 

bonding properties of carbon atoms. Single-walled carbon 

nanotubes (SWCNTs) are developed using single-atom thick 

carbon sheets rolled into cylindrical structures [18]. Multi-

walled nanotubes consist of several of these graphene sheets 

bonded together and rolled into cylindrical structures [38]. 

The type and size of carbon nanotubes administered for drug 

delivery significantly affect cellular uptake. Larger 

nanotubes with larger diameters experience higher cellular 

uptake than smaller nanotubes [39]. However, this comes at 

the cost of increased cytotoxicity, as will be discussed in 

coming sections in this paper. 

 

Translocation Mechanisms of Carbon Nanotubes and 

Methods of Drug Delivery 

Translocation mechanisms, or the methods by which 

nanotubes enter the cell, are not fully understood [37]. 

However, SWCNTs, along with other forms of nanotubes, 

enter cells through various endocytic processes [37]. Carbon 

nanotubes are hydrophobic, insoluble structures, which 

require modifications to enhance their biocompatibility and 

permeability [37]. Covalent and non-covalent 

functionalizations have been popular methods of modifying 

carbon nanotubes into a soluble form [40]. These processes 

involve non-covalently coupling SWCNTs with amphiphilic 

macromolecules or polymers, or covalently coupling them 

with hydrophilic functional groups [37]. Most popularly, 

nanotubes have been coupled with polyethylene glycol 

(PEG), as this method results in low in vivo toxicity rates and 

low accumulation in the liver and spleen, while exhibiting 

higher accumulation in tumors [37]. Non-covalent 

functionalization methods have also demonstrated low 

accumulation in the liver and spleen and high blood 

clearance rates, resulting in low in vivo toxicity, compared to 

non-functionalized SWCNTs [37]. To increase SWCNTs’ 

targeting capabilities, nanotubes can also be conjugated with 

small targeting molecules that will increase the SWCNTs’ 

affinity to overexpressed receptors in cancer cells [37]. 

 

Toxicity 

The cytotoxic effects of carbon naotubes to healthy 

tissue remain a controversial topic. This is largely due to the 

inconsistencies in the toxicology studies conducted to date. 

Toxicity rates depend on several factors. Studies have shown 

that SWCNTs appear to result in higher rates of cell 

apoptosis in comparison to multi-walled nanotubes [41]. It 

has been suggested that this observation can be attributed to 

transition metal contaminants in the SWCNTs that 

accumulated during their manufacturing [41]. However, 

several studies have also observed that multi-walled carbon 

nanotubes may induce carcinogenic effects, such as the 

development of mesothelioma [39]. These conflicting 

observations indicate that the toxicity of carbon nanotubes 

remains a complex issue that requires further investigation.  

 

Discussion 

Limitations of Lipophilicity 

The studies highlighted in this review showcase how a 

drug’s lipophilicity can be altered in a variety of ways to 

obtain promising new drug candidates. While these 

alterations have improved efficacy, selectivity, and 

specificity of the treatments, it is important to note that no 

one physicochemical property can be relied upon to achieve 

the desired ADMET profiling criteria. In this review, a single 

parameter was examined, however, physicochemical 

properties such as a drug’s pKa and water solubility are 

important to consider in drug design and discovery. As such, 

a more extensive summary of how these various elements 

can influence the ADMET profile is required. 
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Limitations of Small Molecule Drug Conjugate Therapies 

Perhaps one of the greatest advantages of SMDCs is the 

variability in each of the structural components. Namely, the 

tremendous variation in targeting ligands ensures that 

therapies can be generated for specific cancer types [32]. 

Their specificity combined with site-specific release, and 

low molecular weight, allows for greater tumour penetration 

and establishes higher drug potency in tumour cells [32]. As 

of right now, only a select few ligands have been analyzed 

systematically as potential drug candidates for cancer 

chemotherapeutics. Currently, folate-targeted small 

molecule drug conjugates are the most established SMDC 

therapy, but said drugs are not without their faults. 

Specifically, SMDCs rely on overexpression of specific 

receptors on tumours, rather than honing on the discovery of 

unique receptors. While this significantly improves the off-

target effects of traditional chemotherapeutics, SMDCs can 

still target healthy cells and exhibit negative side effects. As 

such, this paper largely reports the successes and limitations 

of folate-targeted small molecule drug conjugates. Future 

research should continue to examine novel studies and 

ongoing clinical trials to emphasize advancements to said 

drugs. 

 

Advantages and Limitations of Carbon Nanotubes 

An advantage of utilizing carbon nanotubes in cancer 

therapy is administering combination therapy, which 

involves the loading of several drugs into each nanotube to 

avoid multi-drug resistance [37]. Various studies have 

confirmed the efficacy of conjugating carbon nanotubes with 

chemotherapeutic agents. Conjugated drug-nanotube 

complexes have demonstrated high cytotoxicity to cancer 

cells. Liu et al. (2008) conjugated paclitaxel (PTX), a 

common chemotherapeutic drug, to SWCNT’s to create a 

water-soluble drug-nanotube conjugate [43]. Liu et al. 

(2008) observed a significant reduction in mice tumour size 

in comparison to the use of clinical Taxol® [43]. Similarly, 

Lay et. al (2010) conducted experiments to validate the 

efficacy of PTX-nanotube conjugates in cancer therapy, with 

their results indicating high efficacy in targeting cancer cells 

and exhibiting low toxicity to healthy tissue [44].  

However, despite the potential SWCNTs possess in 

terms of cancer drug delivery, there has been little to no 

application of their use in clinical settings. This is largely due 

to inconsistent toxicity reports from studies in the literature. 

Factors influencing toxicity include the length and diameter 

of the nanotubes used. Longer carbon nanotubes have been 

observed to exhibit more cell death than shorter ones [37]. 

The larger diameters encourage higher cellular uptake by 

healthy tissue, increasing cytotoxicity [39]. Nonetheless, 

various measures have been investigated to address these 

toxicity concerns. The shortening of nanotubes has been 

shown to reduce their aggregation in the bloodstream and 

increase urinary excretion; hence reducing accumulation of 

nanotubes in healthy tissue, specifically the liver, and 

reducing toxicity [45]. In addition, the coatings used to 

functionalize the nanotubes play a role in reducing nanotube 

toxicity. Acid-based coatings have been shown to increase 

toxicity of nanotubes by inducing a high inflammatory 

response [46]. Hence avoiding acid-based functionalization 

of nanotubes is another method of interest to reduce their 

toxicity. It is important to note that this literature review 

primarily discussed single-walled carbon nanotubes as 

potential drug carriers with limited exploration of other 

nanomedical approaches for enhancing drug delivery. Other 

promising nanocarriers include polymeric nanoparticles, 

dendrimers, and magnetic nanocarriers [47]. 

 

Conclusion 

In sum, this review paper presents novel approaches 

from the literature to improve small-molecule drug delivery 

in various cancer types. Firstly, the alteration of a drug 

candidate’s lipophilicity can circumvent undesirable 

characteristics of its physicochemical profile. Ultimately, 

this can help scientists avoid rejecting promising SMDs. 

Moreover, small molecule drug conjugates show tremendous 

promise in their ability to improve tumor tissue selectivity 

and eliminate off-target effects. As an increasing number of 

SMDCs are being tested in clinical trials, said drugs are 

becoming more established as potential cancer therapies. 

Finally, while carbon nanotubes have exhibited promising 

results, their clinical use remains unexplored due to a lack of 

experimental data confirming their safety for prolonged use 

as a drug delivery method. Further toxicology studies are 

crucial for clinical advancements using carbon nanotubes in 

cancer therapy. Together, the discussed methods for targeted 

drug delivery provide alternatives to traditional 

chemotherapeutic drug delivery methods. 
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