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Abstract 

Introduction: The use of machine learning tactics such as the Moran process and evolutionary finite state machines have the 

potential to outperform classic strategies for the iterated prisoner’s dilemma.  

Methods: Applying a genetic algorithm approach to the iterated prisoner’s dilemma while modeling strategies with finite 

state machines proved to be an efficient method in which the produced strategies were able to cooperate unilaterally with 

their opponents. 

Results: Varying parameters in the evolution process such as the amount of generations, population size and bottleneck size 

were shown to directly contribute to the success of the strategies produced. In comparing various optimization methods, the 

genetic algorithm utilizing finite state machines outperformed the Moran process with respect to the highest scoring strategies 

produced by each. 

Conclusions: Tangible tactics can be extracted from these strategies, which were evolved using standard genetic algorithm 

tactics utilizing gene crossover and mutation techniques. 
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Introduction 

The Iterated Prisoner’s Dilemma (IPD) is a popular 

topic of scholarly research in the fields of game theory, 

psychology of cooperative behavior, and artificial intelli-

gence. The iterated prisoner’s dilemma is an extension of 

the original single round game scenario proposed in 1950 

by Merrill Flood and Melvin Dresher while working at 

RAND [1]. The difference with the iterative version is that 

the two participants have the opportunity to learn and make 

decisions following the behavioral tendencies of their op-

ponent [2]. 

The game can be presented with the scenario of two 

criminals being questioned for a crime separately. Each 

criminal is offered a deal involving a lesser punishment for 

betraying their partner in crime. If both criminals decide to 

betray each other, they receive a punishment of ten years in 

prison. If neither of them betrays (meaning they cooperate 

with each other) then each receives a small charge of one 

year. The problem gets interesting in the last scenario, 

where one prisoner decides to betray, while the other 

chooses to cooperate. In this case, the betrayer gets away 

free, while the cooperative criminal now must serve a full 

sentence of twenty years [1].  

The paradox of the iterated prisoner’s dilemma is that if 

both parties just act in their best personal interest, it will not 

result in the most optimal outcome [2]. Hence, since both 

players can expect to interact again after the round finishes, 

they must make a rational decision that will influence their 

opponent towards highest mutual gain.  

Interest in developing strategies towards playing the it-

erated prisoner’s dilemma came from a researcher named 

Robert Axelrod, who proposed a tournament where com-

petitors from around the world applied their computer pro-

grammed strategies against each other’s [3]. The winning 

algorithm in this first tournament was Tit-For-Tat, a deter-

ministic strategy that always cooperated on the first move, 

then chose to repeat the opponents last move for the rest of 

the game [4]. From Axelrod’s experiments and research, he 

concluded that in order for a strategy to be successful, it 

must be nice (optimistically cooperate), know when to re-

taliate (sometimes you must show the opponent the conse-

quences of betrayal), know when to forgive (not retaliate 

when it will just lead to revenge and counter-revenge), and 

be non-envious (not trying to outscore the opponent) [2]. 

However, the point of this research paper is not to create 

our own optimal strategy, rather study the outcome of ap-

plying machine learning. 

Genetic algorithms are one particular field of many 

machine learning models that apply well to the iterated 

prisoner’s dilemma [5]. Genetic algorithms involve the pro-

cess of natural selection to generate solutions for optimiza-

tion and search problems [5]. This is explained in detail 
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with the following sections of this paper, but a high-level 

view of using a genetic algorithm to optimize the prisoner’s 

dilemma involves encoding the strategy using various 

methods such as bit string, or finite state machines. The 

encoded strategy can be viewed as a chromosome from a 

biological perspective, which will undergo mutation and 

reproduction in order to generate the highest performance. 

Finite state machines will be explained in further detail, but 

briefly put: they provide a specific action to perform given 

the current state in a problem. Finite state machines can be 

very powerful in their ability to facilitate reproduction and 

evolve [6]. 

A well-documented python-based library named Axel-

rod-Dojo was used to simulate IPD tournaments and extract 

results [7]. 

The motivation behind applying a genetic algorithm 

approach to the iterated prisoner’s dilemma is the desire to 

discover optimal choices for mutation rates, population 

sizes, memory depths (the amount of previous turns to base 

the current choice off of), as well as extracting some useful 

strategies from the machine-generated outcomes of multiple 

experiments. 

 

Methods 

The Moran Process 

The Moran Process is a widely used population model 

resembling the actions of natural selection [8]. The way this 

model works is it starts with a fixed population size of N 

individuals who interact with each other over many rounds. 

When the players interact with each other every round, a 

score is given to both. In the case of the iterated prisoner’s 

dilemma, the game never changes and has very simple rules 

(previously described above). Each individual’s allocated 

score will influence their fitness levels, which in turn af-

fects their chances of reproduction. Fitness proportionate 

selection is a very important factor in many genetic algo-

rithm models, including the Moran process [8]. In the case 

of the iterated prisoner’s dilemma, many rounds can be 

played between two opponents allowing their fitness score 

to represent the sum of points gained through a series of 

iterated rounds.  

In the implementation of the Moran process within the 

Axelrod library, there is a random chance that one player 

will be replaced by another. Other factors can contribute to 

the reproductive process, such as mutation rate [5]. Having 

mutations within a genetic model such as the Moran pro-

cess is extremely beneficial to ensuring genetic diversity 

within populations [8]. Genetic diversity is a biological 

factor that ensures evolving populations carry unique genet-

ic information (or encoded strategies, in the case of IPD) 

[5]. Mutation alters usually one gene at random allowing 

the chromosomes in a population stay different from each 

other [5]. It is important to note that the mutation rate in a 

genetic model should remain low rather than being high. If 

mutation rates are too high, the search technique ends up 

resembling a random search, since reproductive measures 

won’t be able to carry much effect. Restated, high mutation 

rates have the chance of reversing or scrambling the pro-

gress made in the right direction by combining the best as-

pects of individuals in a population (via reproduction). 

 

 
Figure 1: Dynamic population levels of strategies using the Moran Process.

In context of machine learning and search algorithms, a 

common problem that occurs is the searching technique 

getting stuck in a local minima [5]. If for example repro-

duction was converging in a negative direction, without 
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mutation the search state may never recover from this min-

imum position. As one can see, having the right mutation 

rate can be crucial for a reproductive model.  

Coming back to the efforts of the Moran process, the 

events explained continue over many rounds until the popu-

lation consists of a single individual. This phenomenon is 

known as fixation [8]. It is important to note that when mu-

tation is implemented in the Moran process, there is a pos-

sibility that fixation may never occur, but the population 

may heavily favor one individual as seen in Figure 1. This 

can easily be solved by fixing the number of rounds for the 

population to reproduce. After one has an understanding of 

the Moran process, the observation can be made that this 

search technique is closely related to another technique 

called Beam search. The reason the Moran process is simi-

lar to Beam search is because in the Moran process recom-

bination does not actually involve crossing over of alleles, 

rather the same strategies exist within the population at 

varying levels [8]. Beam search works in a similar way, in 

that the highest performing “branches” of each iteration / 

round of search are used to continue search from, resulting 

in the population tending towards fixation of a strategy with 

the highest fitness level [9]. The real genetic recombination 

happens in the method explained next, finite state ma-

chines. 

 

Finite State Machines 
Finite state machines are a system where particular in-

puts cause an action to occur depending on the current 

“state” thus far [6]. The state is often viewed as a node, 

while edges to other states represent the action to take to 

move to a new state. These mappings from state/action 

pairs to other states allows for specific instructions to be 

encoded with ease. It is important to note that a finite state 

machine always requires a starting state [6]. With respect to 

the iterated prisoner’s dilemma, finite state machine can be 

used to represent a given strategy with only tuples in this 

form: (current state, the opponent’s latest action, the state to 

move to, the action to take). 

For example, the well-known IPD strategy “Tit-for-

Tat”. This strategy initially cooperates, then replicates the 

opponents move for the rest of the game [4]. A finite state 

machine to represent this strategy shown in Figure 2 is as 

follows: (1, C, 1, C) (1, D, 1, D) with initial state 1, and 

initial move cooperate. This roughly translates to “if in state 

1, the opponent cooperates, continue to state 1 and cooper-

ate. If they defect, also continue to state 1 and defect.”  

Although this finite state machine only has one state, 

there can be many states depending on the strategy. Finite 

state machines as strategies for the IPD will end up basing 

their moves of the opponent’s history of moves. This is 

similar to the bit-string encoded method described earlier, 

but slightly more complex in that instead of having a fixed 

history of opponent moves to decide which action to take 

(like the bit string encoded method also known as lookup-

tables), the finite state machine will make its move depend-

ing on which state its currently in. One of the main ad-

vantages to using finite state machines instead of lookup 

tables is that many lookup table rows and their actions are 

redundant; they could easily be represented by a finite state 

machine while using less space to encode the states and 

actions. 

Population genetics as a whole have served as a major 

influence in genetic algorithm models, and have proven to 

give great results in search spaces involving optimization 

problems (such as the iterated prisoner’s dilemma) [5]. The 

results of this application can be seen in the following sec-

tions of this article. 

  

 
Figure 2: Finite state machine representing the “Tit-for-Tat” strategy.

Experimental Setup 

In setting up this experiment, the main programming 

language used is Python version 3. The open source library 

used is the Python Axelrod library, which was developed to 

test and implement algorithms for the iterated prisoner’s 

dilemma [7]. As noted, the effort of this paper was directed 

towards researching IPD, not developing a game-suite to 

run IPD algorithm simulations, which is why the Axelrod 
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library was chosen to build upon. In the Axelrod library, 

many of the classic algorithms, such as Tit-for-Tat, defec-

tor, cooperator, etc. are already implemented and ready for 

use [7]. One main approach was to use the built in Moran 

process abilities of the library to experiment with changing 

population sizes, starting populations, mutation rates and 

round sizes.  

The first experiment involved using a starting popula-

tion of nine individuals. There were three individuals per 

strategy, with the starting IPD strategies being Tit-for-tat, 

defector and cooperator. Here are the brief explanations of 

each strategy: 

Tit-for-tat: This strategy always cooperates on the first 

move, then plays whatever its opponent did on the last turn 

[4]. 

Defector: always chooses to defect instead of cooperate 

[1]. It is important to note that from a purely individual 

standpoint, this strategy theoretically has the highest yield 

of points. As explained previously, the paradox of the IPD 

is that in order to achieve success, the individual must act 

rationally and cooperate with the opponent.  

Cooperator: always cooperates, regardless of opponents 

move. Essentially the opposite of defector [1].  

The starting population of 9 individuals then played 

each other using the standard scoring and rules of the iterat-

ed prisoner’s dilemma. The games were fixed at a length of 

200 turns in order to ensure a large enough representation 

of the two opponents’ strategy against each other. After 

completing their matches, the population would undergo 

reproduction and mutation. The mutation rate of this exper-

iment was fixed at 5%. This sequence of events represents 

one round. Conducting this experiment involved complet-

ing 1000 rounds, measuring the distribution of the popula-

tion each round.  

Since the Moran process is a genetic model, each strat-

egy’s population levels vary from round to round, and the 

strategy that carried the highest population levels each 

round is recorded and graphed for visualization [8]. By the 

end of the 1000 rounds, it was observed that Tit-for-Tat was 

the winner since it well over the majority of the population 

implemented this strategy. 

Although the Moran process approach is very interest-

ing and serves as a great first example for optimizing the 

iterated prisoner’s dilemma, finite state machines allow the 

strategies to completely evolve through reproduction and 

mutation, creating machine-generated strategies for the IPD 

[6]. 

The genetic algorithm used to optimize the search 

space while implementing populations of finite state ma-

chine players has three major parameters: the population 

size, the bottleneck parameter and the mutation probability 

[7]. The importance and effect of the mutation probability 

has already been discussed. The population size corre-

sponds to the number of individuals participating from 

round to round. The bottleneck is a very important parame-

ter, which indicates how many of the strategies ranked via 

the fitness function best to worst, will move on to the next 

generation. Biological systems naturally have a bottleneck 

on their populations, which is why genetic algorithms have 

chosen to implement this evolution-inspired factor [5]. In 

general, the genetic algorithms goal is to use key systems 

found in the evolution process in order to produce the best 

candidate solutions to a problem [2].  

Using this genetic algorithm approach, the finite state 

machines will undergo reproduction and mutation at the 

end of each round while competing against the other strate-

gies for the iterated prisoner’s dilemma. Understanding 

how these state machines create new strategies via crosso-

ver and mutation of their alleles is very important. To un-

dergo crossover, a randomly selected number of 

states/action pairs from a finite state machines encoded 

strategy are switched with another finite state machines 

state/action pairs. This process simulates genetic recombi-

nation (gene crossover of meiosis) in biological systems 

[5].  

Mutation of the finite state machine strategies occurs 

with a carefully selected probability (choice of value dis-

cussed later) in which one of the state/action pairs will be 

switched to another state/action pair within the strategy. 

There is also a mutation probability that the initial action 

and initial state of the finite state machine will be switched 

to a random action/state of the finite state machine.  

With this method of reproduction described, the results 

of performing this genetic algorithm will be described next. 

 

Results 

With the objective function set to score, the finite state 

machine strategies used their summed score as a fitness 

measure while reproducing. The first attempt to produce a 

high performing IPD finite state machine involved running 

the genetic algorithm with the following parameters: the 

bottleneck, which determines how many species of the 

population to allow to continue to the next generation was 

set to 10, the amount of generations to run the genetic algo-

rithm over was set to 15, mutation rate set to 0.1 (or 10% of 

the time a state/action pair would randomly switch to an-

other state/action pair within that FSM, and other mutations 

may occur like the start state or start action changing), the 

objective function (also known as the fitness function 

which evaluates the performance of each strategy) was set 

to the average score of the turns in a single round, the popu-

lation was set to 15 (meaning that the strategy started with 

15 random preset strategies such as TFT, TF2T, Defector 

etc.) and stayed at this level throughout the process, each 

round was set to 100 turns and each round was played over 

3 repetitions [10]. Another important factor about this first 

experiment was the total allowed states to be used was 

fixed at 8, meaning that strategies couldn’t just create an 

infinite amount of states. The reason having the amount of 

states fixed at a small number is important is because with-

out this, the genetic algorithm would essentially be pattern 

matching [9]. This means that in practice, the genetic algo-
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rithm could create a depth of 100 states, one per turn, and 

create a pattern to correctly maximize every opponent in the 

population (which is clearly NOT the desired result of ap-

plying the genetic algorithm).

 

 
Figure 3: Evolution of FSM over 15 generations showing highest scores and state layout for each generation.

As one can see in Figure 3, each generation’s highest 

scoring strategy is displayed, along with its score (which is 

an average of its score from each turn played). The highest 

score of the last generation (Gen. 15) is 2.70. To put this 

number in perspective, a sample tournament was run using 

the predefined strategies: Tit-for-tat, Cooperator, Defector, 

Grudger, and Random. The first three strategies have been 

explained, and Grudger is a strategy that always cooperates 

until the opponent plays defect, then holds a “grudge” for 

the rest of the match, playing defect no matter what [11]. 

The random strategy chooses to defect or cooperate at ran-

dom each round. The results of the sample strategy are 

shown in Figure 4. 

The results show defector having the highest score of 

2.5, followed by Grudger then Tit for Tat scoring a 2.3. The 

finite state machine generated in the first experiment yield-

ed a score of 2.7, performing higher than these four popular 

strategies in the sample tournament. 

Here is that finite state machine visually represented in 

a graph, with the edges between states representing the op-

ponent's action, followed by a slash (‘/’), then the action it 

will take that round while shifting to the new state. ‘C’ 

stands for cooperate, and ‘D’ stands for defect. Notice the 

starting move is cooperate, and the starting state is labelled 

as ‘0’. The disconnected subgraphs of the encoded finite 

state machine were removed for simplicity sake shown in 

Figure 5. 

One important point to discuss about the finite state 

machine approach is that these strategies are not “memory 

one”, meaning they don’t simply choose their next move 

depending on the opponents last move (like tit for tat) [4]. 

In fact, finite state machines don’t have a “memory” as 

lookup tables do, rather the action to take only depends on 

which state is currently being used [6]. This strategy had a 

maximum of 8 states, and only ended up using 5 in the final 

generation. When running the same evolutionary algorithm 

with a maximum of 3 states instead of 8, the results only 

decreased to a best score of 2.67, which is only a 1.1% dif-

ference.  

The small reduction in performance is not as large as 

one might hypothesize, mostly because having three states 

still allows for quite complex strategies to exist, even com-

pared to simple strategies like Tit-for-Tat (which is a one 

state / one memory strategy) [6]. 

The same experiment was performed again, this time 

with a smaller population of size 10, a proportionately 

smaller bottleneck of size 3, same mutation rate of 10%, 

with 8 states but over 50 generations instead of only 15. 

The results showed a best score of 2.78, which is 2.9% 

higher than the last experiments score of 2.70. These results 

and similar retesting lead to the conclusion that performing 

the genetic algorithm over a larger number of generations 

yielded higher results. It is expected that the increased per-

formance comes from more genetic recombination and mu-

tation chances (over the 50 generations).  
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Figure 4: Average fitness scores of stock strategies played against each other in sample tournament

.

  

 
Figure 5: 8-State evolved finite state machine after 15 generations of genetic algorithm.

Recombination creates more opportunity for the finite state 

machines to evolve and utilize the highest performing map-

pings from states to actions through the genetic process [5]. 

Following these results, the same test was performed over 

500 generations. The results re-enforced the hypothesis of 

increasing generations leading to higher performance, with 

a best score of 2.87. The results are shown in Figure 6.
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Figure 6: Highest scoring evolved finite state machine strategies varying according to number of generations during genetic 

process.

Here is the highest scoring 8-state strategy produced 

through evolution of finite state machine strategy: 

 

Generation 500 | Best Score: 2.870754716981132 

0:C:0_C_5_C:0_D_4_D:1_C_0_D:1_D_2_D:2_C_5_C:2_

D_4_D:3_C_0_D:3_D_2_D:4_C_7_C:4_D_7_D:5_C_5_C:

5_D_4_D:6_C_0_D:6_D_2_D:7_C_7_D:7_D_2_C 

 

Some tactics and strategies of the iterated prisoner’s di-

lemma can be extracted from the high scoring finite state 

machines produced through the genetic algorithm. These 

tactics reinforce Robert Axelrod’s conclusions from his 

research, namely: strategies must be nice, know when to 

retaliate, know when to forgive and be non-envious (previ-

ously described) [11]. As you can see, this strategy employs 

some clever tactics, such as choosing to defect even after 

the opponent cooperates a few times, but not always [2]. 

This strategy chooses to defect after the opponent cooper-

ates in states 1, 3, 6, and 7 (total of 4 states). The rest of the 

states show cooperation after cooperation, defection after 

defections, and some forgiving states of cooperation after 

defection. It is observed that this strategy is nice and forgiv-

ing, but also takes the chance to defect after the opponent 

cooperates to maximize its scoring potential.  

It is also important to note that using a bottleneck on 

the population contributed to the evolution of new species 

[10]. Population bottlenecks cause a decrease in genetic 

variation because infrequently occurring alleles (which are 

a variant form of a gene) face a greater chance of being 

excluded from the new generation [10]. This can cause the 

new generation to carry species that are genetically distinct 

from the previous, leading to the evolution of new species, 

and hence new strategies in the context of our genetic algo-

rithm [2]. 

 

Discussion 

Various genetic models were observed and tested to 

measure their performance in generating iterated prisoner’s 

dilemma strategies with the results recorded and analyzed. 

The first genetic model, the Moran process was used to 

maximize the strategies within the search space of a fixed 

population of predetermined classical strategies. The results 

of applying this model showed that natural selection is a 

powerful and efficient tool when applied to the iterated 

prisoner’s dilemma, as competing strategies lead to the 

fixation of the population. As predicted, Tit-For-Tat was 

shown as the highest scoring amongst other simple strate-

gies. 

The second approach while applying evolutionary 

models to the IPD was the use of finite state machines to 

represent individuals in a population of IPD strategies. Fi-

nite state machines composed of state and action pairs rep-

resenting what move to make depending on the opponents 

move in game were used to create powerful strategies that 

outperformed the average scores of the classic IPD strate-

gies [11]. The use of genetic recombination and mutation 

showed to be very effective in elevating the scores of strat-

egies throughout many generations. The use of a bottleneck 

to select a proportion of individuals to move onto the next 

generation contributed to the production of new strategies 

within the population [10].  

The results of evolving the finite state machine provid-

ed useful insight on tactics that can be used in all strategies 

to increase scoring potential. These tactics resembled the 

factors a successful strategy must have proposed by Robert 
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Axelrod’s studies, such as balancing cooperative efforts 

with the correct amount of punishment via defection [2]. 

 

Conclusions 

After observing the performance levels of the evolved 

finite state machine strategies, it became apparent that ge-

netic algorithms perform well in optimization problems 

such as the iterated prisoner’s dilemma, and contribute 

strategies that otherwise would not have been formed with-

out the help of machine learning tactics. The paradox of the 

iterated prisoner’s dilemma is that the player cannot act 

unilaterally in its best interest; it must work with the oppo-

nent to maximize its score [1]. The genetic algorithm appli-

cations shown in this paper were able to produce strategies 

that worked around this game-theoretic dilemma and 

showed results that beat the scores of traditional strategies. 
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