
UNDERGRADUATE RESEARCH IN NATURAL AND CLINICAL SCIENCE AND TECHNOLOGY (URNCST) JOURNAL

Read more URNCST Journal articles and submit your own today at: https://www.urncst.com

Arefeen et al. | URNCST Journal (2019): Volume 3, Issue 8 Page 1 of 6

DOI Link: https://doi.org/10.26685/urncst.152

Continuous Integration Using Gitlab

Mohammed Shamsul Arefeen, BCS Graduate [1]*, Michael Schiller, BCS Student [2]

[1] School of Computer science, Department of Science, University of Windsor, Windsor,

Ontario, Canada N9B3P4

[2] School of Computer Science, Department of Science, University of Windsor, Windsor,

Ontario, Canada N9B3P4

*Corresponding Author: shamsul@uwindsor.ca

Abstract

The method of Continuous Integration (CI) enables developers to use fast-paced development environments, such as Agile,

without the quality of code being compromised. The use of stable repositories on which developers frequently make small

changes, running tests with each modification, results in code that is highly tested and readily deployable. GitLab, like other

tools of its kind, offers CI features along with code versioning, and several team organizational features that correctly map

with Agile artifacts. Before discussing GitLab, this report contains a literature review explaining existing CI practices, and it

identifies fundamental aspects that are necessary to achieving the industry standards of CI. This report also evaluates

GitLab’s effectiveness in maintaining CI standards using an available open-source project (OpenMCT), while also offering

insight on the implications of the gathered findings. The paper concludes with possible directions of future inquiry, and also

provides guidance on how one might expand on the work initiated by the team.

Keywords: continuous integration; agile; software testing; GitLab

Introduction

Continuous integration (CI) is a development practice

which aims to create high quality code with low risk or

uncertainty in its behaviour. The process involves a team of

developers with each individual merging their code into the

currently stable and well-tested code branch, known as the

mainline [1]. These merges should be performed daily, or

more regularly if possible, by each developer in the team

[1]. Due to the frequency of commits, CI is often paired

with Agile development methodologies. When an

individual has completed their task(s), they will run a set of

automated tests to verify their work, and if this passes, it is

then merged into the mainline which is again tested. If these

tests were to fail, the attempted merge - commonly known

as a pull request - would be rejected and the mainline would

remain as it previously had been while the developer makes

corrections, eventually making another merge request.

This paper will document the application of continuous

integration using the tool GitLab and its efficiency at

managing said application. It will explain the process used

in all stages of the case study and will discuss the results of

the study. In addition, it will discuss previous works which

have been found to clearly describe the benefits of

continuous integration using Git, and which have proven to

be generally helpful in the process of its implementation.

Lastly, it will seek to examine possible ways of building on

that foundation which the study accomplished within itself,

and areas of examination which the team wish to have

followed if time had been permitting.

The concept first appeared in a publication for Extreme

Programing, wherein it was mentioned that a team would

need to “integrate and test several times a day”, while also

getting rid of code that was not used for integration [2].

Although there is no single correct technique for

implementing Continuous Integration, the concept of CI

was solidified later by Martin Fowler, who states that there

are certain industry-relevant practices that are proven to

uphold the standards of said methodology [1]. These

practices include:

1. “Maintaining a single source repository” - the

mainline [1]

2. Several commits made to the Mainline, daily [1]

3. Automating both Building and Testing [1]

4. Testing code locally, prior to testing the integration

with mainline [1]

The automation aspect of CI is pertinent to Continuous

Deployment (CD) as well - the latter ensures that all CI

processes are then readily deployed to production [3].

Automating the build along with tests ensures that the

number of steps required to deploy are reduced

significantly by creating a stable code that is both

functional and virtually fault-free [3].

PRIMARY RESEARCH OPEN ACCESS

https://www.urncst.com/
https://doi.org/10.26685/urncst.152
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.26685/urncst.152&domain=pdf
mailto:shamsul@uwindsor.ca

UNDERGRADUATE RESEARCH IN NATURAL AND CLINICAL SCIENCE AND TECHNOLOGY (URNCST) JOURNAL

Read more URNCST Journal articles and submit your own today at: https://www.urncst.com

Arefeen et al. | URNCST Journal (2019): Volume 3, Issue 8 Page 2 of 6

DOI Link: https://doi.org/10.26685/urncst.152

Importance of CI in Agile

The aforementioned points are presumed to have been

carried out in a fast paced development environment, and as

such it is very common to see CI and Agile being closely

paired to each other [4]; Afterall, the roots of CI are deeply

embedded into Extreme Programming [2]. Furthermore, the

benefits of CI and Agile are mutual in nature - practice of

one should benefit/enable the other. Acceptance tests, for

example, play an integral role in Agile environments, and

Continuous Integration can support these tests using its own

methodology (build automation, frequent deployment,

testing locally before merging mainline, etc.) [4].

Software Testing

Testing, in particular unit testing, plays an integral role

in CI, and as such it’s important to discuss how a team

might approach testing their code. There are several layers

of testing that can be undertaken, but the bare minimum

standard are unit tests [1]. The unit tests, or any tests for

that matter, need to be automated, making way for code that

is “self-testing” and one which can be used to test both the

mainline, and the local repositories [1]. If combining CI

with Agile, it is recommended to consider including the

acceptance tests into the automated testing process [4].

Acceptance tests will not only build on the pre-existing unit

tests, but also help to satisfy the user stories that come with

each Agile sprint. A condition that should be met with high

priority, regardless of the nature of the tests themselves, is

that the testing process is fully automated [1].

Version Control

The ability to integrate changes from several branches

into one mainline is made possible through version control

tools - the practice of which becomes a necessity in Agile

teams. Version control tools such as GitHub allow pull

requests to be performed - an action which merges the latest

committed branch into the mainline [5]. Pull request

performance needs to be maintained throughout the CI

cycle, as any interruption or failure to merge could interrupt

the workflow of the team. Moreover, pull request

performance for a given repository can degrade with an

increase in the number of contributors for a given project

[6]. Therefore, a reliable version control tool needs to be

chosen, one that offers consistent performance with scale

and comes with an ability to restrict access to the repository

to the development team at hand.

This information can be used to conduct studies, in an

effort to show variations in approaches between different

environments. The frequency and size of commits may vary

depending on the size of the organization - developers from

larger organizations tend to commit less frequently than

their smaller counterparts [7]. There is a linear relationship

between size of commits and the number of committers,

variations arise, however, when developers have to choose

between merging into mainline directly or merging first

from local branches [7].

Methods

Tools Used

To evaluate Continuous Integration standards, the team

has chosen GitLab as the primary tool - a platform which

will enable the team to acquire experience using CI and

also report on any findings that may be of significance to

this study.

GitLab: GitLab is a web-based DevOps workflow

application that boasts several options for managing

Continuous Integration and Continuous Deployment

(CI/CD), while also offering their customers with all the

benefits of a standard version control tool [8]. GitLab and

its services were extensively used throughout the duration

of this study for various purposes that will be discussed in

later sections. GitLab also provides team management and

workflow tools like responsibility, milestones, issues, etc.

which are designed to facilitate communication and

collaboration within the team throughout the development

lifecycle, enabling Agile development [8].

GitLab CI/CD: GitLab provides its customers with

Continuous Integration tools such as merge requests to the

mainline, automating build and tests, validating the changes

in the mainline, etc. [9].

GitLab Runner: GitLab Runner is the app that handles the

build automation and test automation and is responsible for

running all integration pipelines; at least one instance of

GitLab Runner needs to be running (preferably on a remote

server) to completely utilize GitLab’s CI/CD tools [10].

Multiple GitLab Runners can be installed on separate

servers, and they can be configured to shared, specific or

group settings, as per the team’s requirements [10].

Open-source Project

The subject on which this study was tested is

OpenMCT - an open-source mission control framework

developed by NASA, available on both mobile and desktop

[11]. It was built using Node.Js, Angular.Js and Express.Js

for front and back end respectively, and the tests are written

with Jasmine.Js, and then run using Karma [11]. There are

several reasons as to why this project was ideal for this

study. Firstly, it is a large-scale and well-maintained

project, meaning that it could be tested and modified in a

realistic manner. Secondly, it included many pre-written

unit tests (thanks to the past contributors), which reduced

the need for unique more tests to be developed for the

purpose of this study.

Experiment

Setup: With the required tools and test subject being

established, the next step for the team was to set up the

GitLab environment, which included creating a group, and

inviting the rest of the team members for access to the

project resources. The team was then able to clone the

repository of OpenMCT to a GitLab repository specific to

this study, along with its pre-existing branches and commit

history, and thereafter begin to experiment. Settings for

https://www.urncst.com/
https://doi.org/10.26685/urncst.152

UNDERGRADUATE RESEARCH IN NATURAL AND CLINICAL SCIENCE AND TECHNOLOGY (URNCST) JOURNAL

Read more URNCST Journal articles and submit your own today at: https://www.urncst.com

Arefeen et al. | URNCST Journal (2019): Volume 3, Issue 8 Page 3 of 6

DOI Link: https://doi.org/10.26685/urncst.152

CI/CD had to be configured, followed by installation of

GitLab Runner on a remote server. An important setting

was to automatically merge a branch if pipeline succeeds -

a decision which is left to the team members at hand. This

does not affect the success/failure of the merge pipeline, as

it will still show the results from the tests, and will only

pass if all the jobs (comprised of several testing aspects)

pass. Also required is a “.yml” file that sits in the code

repository - this file carries with it instructions (as scripts)

for the GitLab Runner - scripts such as initiating build,

tests, caching, etc.

The team was then ready to clone the group project

from GitLab to local repositories (respective to each team

member) and begin working on their code. The code

contribution was minimal, with the team sticking to writing

an additional five unit tests distributed between different

components (on-screen modules, APIs, etc.) throughout the

project, but it was enough to test the functionality of GitLab

CI.

Implementation: Each individual teammate is ought to test

their code using the unit tests available before committing

the changes and making a pull request to the remote

repository. The pull request clones the local repository on

GitLab servers and triggers the GitLab Runner on the

remote server to start automating the build and testing. The

pipeline for this request will indicate the results from the

GitLab Runner, and the success of the test jobs. The team

can either “manual merge” the latest branch into mainline

or set GitLab to automatically merge if the pipeline

succeeds.

Given the erroneous code commits, the goal here was

to trigger a “pipeline fail” from pull requests (made from

local to remote branch), due to erroneous code that was

intentionally inserted into branch(es). This works because

the code is self-testing, and if there are errors in the tests

themselves, the merge should pipeline should fail. The team

member who was assigned to the merge request will be

alerted of the failure. Regardless of the results, GitLab

provides the option to merge the remote repository into the

mainline.

Results

Thanks to the CI Analytics tool provided by GitLab, it

was possible for the team to acquire information from

charts that were automatically generated from Git data [8].

The two most-significant findings include Pipeline

Completion Times and Success to Failure rate of Pipelines.

A pipeline represents a job that the GitLab Runner has

undertaken and may consist of several jobs (test types), the

results from which will be used to evaluate the

success/failure of the pipeline. According to the guidelines

for CI, a team should commit several times a day [1], and

this means that numerous pipelines will be processed in a

single day. Calculating the time required for each pipeline,

and the success of each becomes an important study in

understanding the effectiveness of this standard.

Pipeline Completion Time

The pipelines themselves correspond to pull requests

initiated by teammates and are indicative of either changes

in existing remote code branch, or a newly cloned (local to

remote) code branch. Regardless, the results in Figure 1

appear to match the outcome that the team had predicted –

with pipelines running on erroneous code failing, while

those coming from well-tested branches passing the

pipeline tests.

The maximum time a pipeline took to finish was 12

minutes, while the fastest pipeline lasted only 5 minutes.

The results can be seen below in Figure 2 y-axis represents

time in minutes, x-axis is the pipeline code.

Figure 1. Success to failure ratio of pipelines

https://www.urncst.com/
https://doi.org/10.26685/urncst.152

UNDERGRADUATE RESEARCH IN NATURAL AND CLINICAL SCIENCE AND TECHNOLOGY (URNCST) JOURNAL

Read more URNCST Journal articles and submit your own today at: https://www.urncst.com

Arefeen et al. | URNCST Journal (2019): Volume 3, Issue 8 Page 4 of 6

DOI Link: https://doi.org/10.26685/urncst.152

Figure 2. Time required to complete individual pipelines.

The experiment confirms that the time taken to

complete a pipeline is relatively short and therefore should

not discourage developers from making several commits a

day. While the Success to Failure ratios indicate that it is

indeed possible to catch faulty commits before they’re

integrated with the mainline. Therefore, stress should be

placed on maintaining high standards for frequency of

commits and the quality of tests used for the purpose of CI.

Whilst the results were positive in nature, there were a

few noticeable weaknesses of which anyone hoping to

implement it should be aware. It was found that erroneous

code, if not caught by unit test(s), will be undetected by the

CI tool and therefore be allowed to merge with the

mainline. This demonstrates the dependence of the success

of continuous integration on well-designed tests which will

catch as many errors as possible, and how lacking certain

tests might result in the mainline being (eventually) faulty

due to erroneous code. Also, it is recognized that some

developers may avoid running the automated tests before

sending the request into the merge queue, to fasten the

speed of code delivery. This is a major concern which

undermines the very center of the process, and greatly

improves the chance of bugs entering into the mainline.

Through education and policy this must be discouraged

within teams, and the importance of verification and

validity must be stressed highly.

Discussion

Evaluating the Results

The gathered results clearly indicate the usefulness in

the functionality of Continuous Integration using GitLab

DevOps tools, against the aforementioned industry

standards [1]. The successes/failures of the pipelines are

what the team expected them to be - the failed pipelines

exactly correspond to branches with erroneous code, while

the successful pipelines represent those branches from well-

tested code. Despite minor setbacks, wherein the integration

(merge) pipeline would halt due to unavailability of GitLab

Runner (pipeline “98c8e19d” in Figure 2), GitLab

maintained a good standard of what to expect from a tool

that made CI facilities available for development teams.

The time taken to complete a pipeline is an important

metric in understanding how long a pull request would take

before the next one can be processed. In a practical

environment, several pipelines may be initiated

simultaneous and unless multiple GitLab Runners are made

available, the pipelines will have to be completed

sequentially, in a chronological fashion.

What we derived from this experiment applies not only

to a small team but can be extrapolated to understand what

can be expected from practical scenarios in a real-world

industry environment.

Assumptions

Despite the team’s best efforts to adhere to industry

practices, the team lacked enough resources to put in

quality contributions (code development and testing) to

actually simulate a real-world environment. While the team

assumes that this is not necessarily a major disadvantage for

this study, it still puts the team back at least one factor from

a one-to-one mapping of a real-world scenario. Therefore,

we assume that any changes in code that are submitted for a

pull request are small in magnitude and don’t differ from

the mainline a great degree, as per best practices for CI [1].

Another assumption that the team had made has to do

with the usage of unit tests as opposed to any higher levels

of testing. While still meeting the basic requirements for CI,

it may not represent a realistic scenario - a company might

choose to use acceptance tests or even regression testing.

The testing and build processes need to be automated, and

the team has maintained that criterion throughout each

integration pipeline. However, as the aforementioned

process packages came pre-packed with the OpenMCT

project repository, the team didn’t have the need to

customize/re-write the automation scripts. This can change

in the industry as per change in requirements, the stack

https://www.urncst.com/
https://doi.org/10.26685/urncst.152

UNDERGRADUATE RESEARCH IN NATURAL AND CLINICAL SCIENCE AND TECHNOLOGY (URNCST) JOURNAL

Read more URNCST Journal articles and submit your own today at: https://www.urncst.com

Arefeen et al. | URNCST Journal (2019): Volume 3, Issue 8 Page 5 of 6

DOI Link: https://doi.org/10.26685/urncst.152

might change as well, and with it the packages for build

automation and test automation.

Conclusions

Continuous Integration (CI) is a necessary element for

fast-paced development environments, and full effort

should be made by teams to ensure the fulfillment of the

bare minimum standards of CI. Through the literature

review, the team identified four standards that are common

to most CI environments - the fulfillment of which is

necessary to ensure CI [1]. Through the use of GitLab

CI/CD tools, the team was able to demonstrate the

significance of CI in a simulated Agile environment, while

also comparing the functionality of said tools against

common standards for CI. Committing several times a day

can help to catch errors in small batches, and writing tests

for each component ensures that fewer errors are left

undiscovered. The process of build and test automation are

also a necessity for CI, as they enable the creation of a

stable mainline, and facilitate production deployment.

Future Directions

Due to time constraints of the study, it was deemed

infeasible to fully develop a piece of software from scratch.

Given more time, it would have been a useful and

enlightening experience to see through the entire

development lifecycle of an application and evaluate CI on

that particular example. Also, it would be valuable to

perform more realistic and numerous merging scenarios

than have been done in this study, and to collect data

regarding the relation of the rate successful merge requests

and the time spent working on that branch. These are

metrics that come into play, especially where there are

significantly high number of contributors, and a similarly

high number of pull requests being made to the mainline.

Another variation is where a team chooses to use different

levels of testing as opposed to unit tests – acceptance tests

or regression tests are viable alternatives.

Another useful area of investigation would be to

implement Continuous Integration using different tools,

such as Codeship, Jenkins or CircleCI, and to compare

these with GitLab. The team would like to evaluate said

alternative tools and discover the degree to which they

fulfill the standards of CI. Additionally, the team aims to

make a more thorough comparison of DevOps features that

are provided by the aforementioned tools. Also, there are

multiple approaches to implementing continuous

integration [12], with relation to the regularity of merges

and various policies, and to experiment with these and

compare their advantages and disadvantages would be

valuable.

List of Abbreviations

CI: Continuous Integration

CD: Continuous Development

API: Application Program Interface

Conflicts of Interest

The author(s) declare that they have no conflicts of interest.

Ethics Approval and/or Participant Consent

The only participants involved in the study were the authors

and no additional consent was required for the study.

Authors’ Contributions

MSA and MPS: contributed to all aspects of the study

including the drafting, evaluation of results and reviewing.

MPS: Researched available tools for CI, and features

provided by GitLab that map to CI standards. Setup the

experiment environment.

MSA: Researched on available open-source projects,

conducted the case-study experiment and gathered results

(analytics) from experiment.

Funding

This study was not funded.

Acknowledgements

Dr. Ziad Kobti: Provided direction and support in

formulating the general outline of the study.

Dr. Pooya Morian Zadeh: Provided feedback on necessary

improvements to quality of study.

References

[1] Fowler M. Continuous Integration [Internet].

martinfowler.com. 2019 [cited 3 April 2019].

Available from:

https://martinfowler.com/articles/continuousIntegration

.html

[2] Beck K. Extreme programming: A humanistic

discipline of software development. Fundamental

Approaches to Software Engineering. 1998;:1-6.

https://doi.org/10.1007/BFb0053579

[3] Meyer M. Continuous Integration and Its Tools. IEEE

Software. 2014;31(3):14-16.

https://doi.org/10.1109/MS.2014.58

[4] Stolberg S. Enabling Agile Testing through Continuous

Integration. 2009 Agile Conference. 2009;.

https://doi.org/10.1109/AGILE.2009.16

[5] About pull requests - GitHub Help [Internet].

Help.github.com. 2019 [cited 3 April 2019]. Available

from: https://help.github.com/en/articles/about-pull-

requests

[6] Vasilescu B, Yu Y, Wang H, Devanbu P, Filkov V.

Quality and productivity outcomes relating to

continuous integration in GitHub. Proceedings of the

2015 10th Joint Meeting on Foundations of Software

Engineering - ESEC/FSE 2015. 2015;.

https://doi.org/10.1145/2786805.2786850

[7] Ståhl D, Mårtensson T, Bosch J. The continuity of

continuous integration: Correlations and consequences.

Journal of Systems and Software. 2017;127:150-67.

https://doi.org/10.1016/j.jss.2017.02.003

https://www.urncst.com/
https://doi.org/10.26685/urncst.152
https://martinfowler.com/articles/continuousIntegration.html
https://martinfowler.com/articles/continuousIntegration.html
https://doi.org/10.1007/BFb0053579
https://doi.org/10.1109/MS.2014.58
https://doi.org/10.1109/AGILE.2009.16
https://help.github.com/en/articles/about-pull-requests
https://help.github.com/en/articles/about-pull-requests
https://doi.org/10.1145/2786805.2786850
https://doi.org/10.1016/j.jss.2017.02.003

UNDERGRADUATE RESEARCH IN NATURAL AND CLINICAL SCIENCE AND TECHNOLOGY (URNCST) JOURNAL

Read more URNCST Journal articles and submit your own today at: https://www.urncst.com

Arefeen et al. | URNCST Journal (2019): Volume 3, Issue 8 Page 6 of 6

DOI Link: https://doi.org/10.26685/urncst.152

[8] The DevOps Lifecycle with GitLab [Internet]. GitLab.

2019 [cited 3 April 2019]. Available from:

https://about.gitlab.com/stages-devops-lifecycle/

[9] GitLab Continuous Integration & Delivery [Internet].

GitLab. 2019 [cited 3 April 2019]. Available from:

https://about.gitlab.com/product/continuous-

integration/

[10] Configuring GitLab Runners [Internet]. GitLab. 2019

[cited 3 April 2019]. Available from:

https://docs.gitlab.com/ee/ci/runners/

[11] nasa/openmct [Internet]. GitHub. 2019 [cited 3 April

2019]. Available from:

https://github.com/nasa/openmct

[12] Ståhl D, Bosch J. Modeling continuous integration

practice differences in industry software development.

Journal of Systems and Software. 2014;87:48-59.

https://doi.org/10.1016/j.jss.2013.08.032

Article Information

Managing Editor: Jeremy Y. Ng

Peer Reviewers: Ikjot Saini, Kalyani Selvarajah, Mahreen Nasir Butt

Article Dates: Received Aug 07 19; Published Sep 11 19

Citation

Please cite this article as follows:

Arefeen MS, Schiller M. Continuous integration using Gitlab. URNCST Journal. 2019 Sep 11: 3(8).

https://urncst.com/index.php/urncst/article/view/152

DOI Link: https://doi.org/10.26685/urncst.152

Copyright

© Mohammed Shamsul Arefeen, Michael Schiller. (2019). Published first in the Undergraduate Research in Natural and

Clinical Science and Technology (URNCST) Journal. This is an open access article distributed under the terms of the

Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use,

distribution, and reproduction in any medium, provided the original work, first published in the Undergraduate Research in

Natural and Clinical Science and Technology (URNCST) Journal, is properly cited. The complete bibliographic information,

a link to the original publication on http://www.urncst.com, as well as this copyright and license information must be

included.

Do you research in earnest? Submit your next undergraduate research article to the URNCST Journal!

| Open Access | Peer-Reviewed | Rapid Turnaround Time | International |

| Broad and Multidisciplinary | Indexed | Innovative | Social Media Promoted |

Pre-submission inquiries? Send us an email at info@urncst.com | Facebook, Twitter and LinkedIn: @URNCST

Submit YOUR manuscript today at https://www.urncst.com!

https://www.urncst.com/
https://doi.org/10.26685/urncst.152
https://about.gitlab.com/stages-devops-lifecycle/
https://about.gitlab.com/product/continuous-integration/
https://about.gitlab.com/product/continuous-integration/
https://docs.gitlab.com/ee/ci/runners/
https://github.com/nasa/openmct
https://doi.org/10.1016/j.jss.2013.08.032
https://urncst.com/index.php/urncst/article/view/152
https://doi.org/10.26685/urncst.152
https://creativecommons.org/licenses/by/4.0/
http://www.urncst.com/
mailto:info@urncst.com
https://www.facebook.com/urncst
https://twitter.com/urncst
https://www.linkedin.com/company/urncst
https://www.urncst.com/

